1887

Abstract

Chemical cleavage of the VP6 protein of bovine rotavirus showed that VP6-specific monoclonal antibodies (MAbs) reacted with the amino acid sequence between glycine 48 and asparagine 107. Furthermore, three synthetic peptides (amino acids 48 to 64, 60 to 75 and 91 to 108) containing part of this sequence and 22 consecutive overlapping heptapeptides corresponding to the region between amino acids 48 and 75 were analysed for their immunoreactivity using group-specific MAbs. The MAbs recognized peptides 48–64 and/or 60–75, and a set of overlapping heptapeptides located between residues 53 (asparagine) and 67 (glycine), which have two short sequences in common: IRNW (residues 56 to 59), recognized by MAb RV-133, and (NW)NFD (residues 58/60 to 62), recognized by MAbs RV-50, -1026 and -443. These results indicate that the sequence between amino acid residues 48 and 75 is present in one of the immuno-dominant sites of VP6.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-73-4-907
1992-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/73/4/JV0730040907.html?itemId=/content/journal/jgv/10.1099/0022-1317-73-4-907&mimeType=html&fmt=ahah

References

  1. Atherton E., Sheppard R. C. 1985; Solid phase peptide synthesis using Nα-fluorenylmethoxycarbonylamino acid pentafluorophenyl esters. Journal of the Chemical Society, Chemical Communications 3:165–166
    [Google Scholar]
  2. Bican P., Cohen J., Charpilienne A., Scherrer R. 1982; Purification and characterization of bovine rotavirus cores. Journal of Virology 43:1113–1117
    [Google Scholar]
  3. Borras-Cuesta F., Petit A., Pery P., Fedon Y., Garnier J., Cohen J. 1987; Immunogenicity of synthetic peptides corresponding to regions of the major inner capsid protein of bovine rotavirus (BRV). Annales de Virologie/Institut Pasteur 138:437–450
    [Google Scholar]
  4. Bourgeois C., Corvaisier C., Bour J. B., Kohli E., Pothier P. 1991; Use of synthetic peptides to locate neutralizing antigenic domains on the fusion protein of respiratory syncytial virus. Journal of General Virology 72:1051–1058
    [Google Scholar]
  5. Bremont M., Chabanne-Vautherot D., Vannier P., McCrae M. A., Cohen J. 1990; Sequence analysis of the gene 6 encoding the major capsid protein (VP6) of group C rotavirus: higher than expected homology to the corresponding gene from group A virus. Virology 178:579–583
    [Google Scholar]
  6. Chen G. M., Werner-Eckert R., Tao H., Mackow E. R. 1991; Expression of the major inner capsid protein of the group B rotavirus ADRV: primary characterization of genome segment 5. Virology 182:820–829
    [Google Scholar]
  7. Clapp L. L., Patton J. T. 1991; Rotavirus morphogenesis: domains in the major inner capsid protein essential for binding to single-shelled particles and for trimerization. Virology 180:697–708
    [Google Scholar]
  8. Cohen J., Lefevre F., Estes M. K., Bremont M. 1984; Cloning of bovine rotavirus (RF strain): nucleotide sequence of the gene coding for the major capsid protein. Virology 138:178–182
    [Google Scholar]
  9. Estes M. K., Mason B. B., Crawford S., Cohen J. 1984; Cloning and nucleotide sequence of the simian rotavirus gene 6 that codes for the major inner capsid protein. Nucleic Acids Research 12:1875–1887
    [Google Scholar]
  10. Frenchick P., Sabara M. I., Ijaz M. K., Babiuk L. A. 1987; Immune responses to synthetic peptide vaccines of veterinary importance. In Applied Virology Research: New Vaccines and Chemotherapy, pp 141–151 Edited by Kurstak E., Marusyk R. G., Murphy F. A., van Regenmortel M. H. V. New York & London: Plenum Press;
    [Google Scholar]
  11. Fukuhara N., Yashie O., Kitaoka S., Konno T. 1988; Role of VP3 in human rotavirus internalization after target cell attachment via VP7 . Journal of Virology 62:2209–2218
    [Google Scholar]
  12. Garnier J., Osguthorpe D. J., Robson B. 1978; Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. Journal of Molecular Biology 120:97–120
    [Google Scholar]
  13. Geysen H. M., Meloen R. H., Barteling S. J. 1984; Use of peptide synthesis to probe viral antigens to a resolution of a single amino acid. Proceedings of the National Academy of Sciences, U.S.A 81:3998–4002
    [Google Scholar]
  14. Gnann J. W., Nelson J. A., Oldstone M. B. A. 1987; Fine mapping of an immunodominant domain in the transmembrane glycoprotein of human immunodeficiency virus. Journal of Virology 61:2639–2641
    [Google Scholar]
  15. Gorziglia M., Larrea C., Liprandi F., Esparza J. 1985; Biochemical evidence for the oligomeric (possibly trimeric) structure of the major inner capsid polypeptide (45K) of rotaviruses. Journal of General Virology 66:1889–1900
    [Google Scholar]
  16. Gorziglia M., Hoshino Y., Nishikawa K., Maloy W. L., Jones R. W., Kapikian A. Z., Chanock R. M. 1988; Comparative sequence analysis of the genomic segment 6 of four rotaviruses each with a different subgroup specificity. Journal of General Virology 69:1659–1669
    [Google Scholar]
  17. Goudsmit J., Debouck C., Meloen R. H., Smith L., Baker M., Asher D. M., Wolff A. V., Gibbs C. J., Gajdusek D. 1988; Human immunodeficiency virus type 1 neutralization epitope with conserved architecture elicits early type-specific antibodies in experimentally infected chimpanzees. Proceedings of the National Academy of Sciences, U.S.A 85:4478–4482
    [Google Scholar]
  18. Hogle J. M., Chow M., Filman D. J. 1985; Three-dimensional structure of poliovirus at 2.9 A resolution. Science 229:1358–1365
    [Google Scholar]
  19. Hopp T. P., Woods K. R. 1981; Prediction of protein antigenic determinants from amino acid sequences. Proceedings of the National Academy of Sciences, U.S.A 78:3824–3828
    [Google Scholar]
  20. Janin L. 1979; Surface and inside volumes in globular proteins. Nature, London 277:491–492
    [Google Scholar]
  21. Karplus P. A., Schulz G. E. 1985; Prediction of chain flexibility in proteins: a tool for the selection of peptide antigens. Naturwissen-schaften 72:212–213
    [Google Scholar]
  22. Kusters J. G., Jager E. J., Lenstra J. A., Koch G., Posthumus W. P. A., Meloen R. H., van der Zeijst B. A. M. 1989; Analysis of an immunodominant region of infectious bronchitis virus. Journal of Immunology 143:2692–2698
    [Google Scholar]
  23. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227:680–685
    [Google Scholar]
  24. Lischwe M. A., Ocks D. 1982; A new method for partial peptide mapping using N-chlorosuccinimide/urea and peptide silver staining in sodium dodecyl sulfate-polyacrylamide gels. Analytical Biochemistry 127:453–457
    [Google Scholar]
  25. Liu M., Offit P. A., Estes M. K. 1988; Identification of the simian rotavirus SA-11 genome segment 3 product. Virology 163:26–32
    [Google Scholar]
  26. Mackow E. R., Shaw R. D., Matsui S. M., Vo P. T., Dang M. N., Greenberg H. B. 1988; The rhesus rotavirus gene encoding protein VP3: location of amino acids involved in homologous and heterologous rotavirus neutralization and identification of a putative fusion region. Proceedings of the National Academy of Sciences, U.S.A 85:645–649
    [Google Scholar]
  27. Matsui S. M., Mackow E. R., Greenberg H. B. 1989; Molecular determinant of rotavirus neutralization and protection. Advance in Virus Research 36:181–214
    [Google Scholar]
  28. Meloen R. H., Puyk W. C., Meijer D. J. A., Lankhof H., Posthumus W. P. A., Schaaper W. M. M. 1987; Antigenicity and immunogenicity of synthetic peptides of foot-and-mouth disease virus. Journal of General Virology 68:305–314
    [Google Scholar]
  29. Novo E., Esparza J. 1981; Composition and topography of structural polypeptides of bovine rotavirus. Journal of General Virology 56:325–335
    [Google Scholar]
  30. Pothier P., Kohli E., Drouet E., Ghim S. 1987; Analysis of the antigenic sites on the major inner capsid protein (VP6) of rotavirus with monoclonal antibodies. Annales de Virologie/Institut Pasteur 138:285–295
    [Google Scholar]
  31. Prasad B. V. V., Wang G. J., Clerx J. P. M., Chiu W. 1988; Three-dimensional structure of rotavirus. Journal of Molecular Biology 199:269–275
    [Google Scholar]
  32. Sabara M., Ready K. F. M., Frenchick P. J., Babiuk L. A. 1987; Biochemical evidence for the oligomeric arrangement of bovine rotavirus nucleocapsid protein and its possible significance in the immunogenicity of this protein. Journal of General Virology 68:123–133
    [Google Scholar]
  33. Sandino A. M., Jashes M., Faundez G., Spencer E. 1986; Role of the inner protein capsid on in vitro human rotavirus transcription. Journal of Virology 60:797–802
    [Google Scholar]
  34. Saris C. J. M., van Eenbergen J., Jenks B. G., Bloemers M. P. J. 1983; Hydroxylamine cleavage of proteins in polyacrylamide gels. Analytical Biochemistry 127:453–457
    [Google Scholar]
  35. Spangler B. D. 1991; Binding to native proteins by antipeptide monoclonal antibodies. Journal of Immunology 146:1591–1595
    [Google Scholar]
  36. Svensson L., Sheshberadaran H., Vene S., Norrby E., Grandien M., Wadell G. 1987a; Serum antibodies responses to individual viral polypeptides in human rotavirus infections. Journal of General Virology 68:643–651
    [Google Scholar]
  37. Svensson L., Sheshberadaran H., Vesikari T., Norrby E., Wadell G. 1987b; Immune response to rotavirus polypeptides after vaccination with heterologous rotavirus vaccines (FIT 4237, RRV-1). Journal of General Virology 68:1993–1999
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-73-4-907
Loading
/content/journal/jgv/10.1099/0022-1317-73-4-907
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error