1887

Abstract

The structural proteins of rubella virus consist of a nucleocapsid protein (C) and two membrane-embedded spike glycoproteins (E1 and E2). Since many reports have suggested that rubella virus buds intracellularly, we have examined the intracellular transport of the structural proteins in the absence of virion formation, particularly whether the membrane glycoproteins are retained inside the cell or are transported to the cell surface. We have expressed the structural proteins from cloned cDNA either alone or in different combinations, have examined the intracellular location of the proteins by immunofluorescence and using biochemical methods, and have looked for plasma membrane-localized E1 or E2 using a cell surface biotinylation assay. The C protein was found in the Golgi complex when expressed with E2 and E1; without the membrane glycoproteins, C appeared to remain in the endoplasmic reticulum (ER). When expressed alone, E1 was retained in a pre-Golgi compartment, and was not detected at the cell surface in any cell line. When E2 was expressed alone a small fraction could be detected at the cell surface, but the majority was retained intracellularly, apparently in the ER and the Golgi. Both proteins were transported to the surface when they were expressed together, albeit with low efficiencies in all cell lines. These data suggest that, although neither glycoprotein carries a dominant intracellular retention signal, E2 and E1 are largely retained in the Golgi even when present as a transport-competent heterodimer.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-73-5-1073
1992-05-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/73/5/JV0730051073.html?itemId=/content/journal/jgv/10.1099/0022-1317-73-5-1073&mimeType=html&fmt=ahah

References

  1. Baenziger J. U., Fiete D. 1979; Structural determinants of Ricinus communis agglutinin and toxin specificity for oligosaccharides. Journal of Biological Chemistry 254:9795–9799
    [Google Scholar]
  2. Bardeletti G., Gautheron D. C. 1976; Phospholipid and cholesterol composition of rubella virus and its host cell BHK-21 grown in suspension culture. Archives of Virology 52:19–27
    [Google Scholar]
  3. Bardeletti G., Tektoff J., Gautheron D. 1979; Rubella virus maturation and production in two host cell systems. Intervirology 11:97–103
    [Google Scholar]
  4. Baron M. D., Forsell K. F. 1991; Oligomerisation of the structural proteins of rubella virus. Virology 185:811–819
    [Google Scholar]
  5. Baron M. D., Garoff H. 1990; Mannosidase II and the 135kDa Golgi-specific antigen recognised by monoclonal antibody 53FC3 are the same dimeric protein. Journal of Biological Chemistry 265:19928–19931
    [Google Scholar]
  6. Bartles J. R., Braiterman L. T., Hubbard A. L. 1985; Biochemical characterisation of domain-specific glycoproteins of rat hepatocyte plasma membrane. Journal of Biological Chemistry 260:12792–12802
    [Google Scholar]
  7. Bendzko P., Prehn S., Pfeil W., Rappoport T. A. 1982; Different modes of membrane interactions of the signal sequence of carp preproinsulin and of the insertion sequence of rabbit cytochrome b5. European Journal of Biochemistry 123:121–126
    [Google Scholar]
  8. Bleil J. O., Bretscher M. S. 1982; Transferrin receptor and its recycling in HeLa cells. EMBO Journal 1:351–355
    [Google Scholar]
  9. Bonissol C., Sisman J. 1968; Etude au microscope électronique du site de maturation du virus de la rubeole. Comptes rendus de l’Academic des Sciences 267:1337–1340
    [Google Scholar]
  10. Bowden D. S., Westaway E. G. 1984; Rubella virus: structural and non-structural proteins. Journal of General Virology 65:933–943
    [Google Scholar]
  11. Bowden D. S., Westaway E. G. 1985; Changes in glycosylation of rubella virus envelope proteins during maturation. Journal of General Virology 66:201–206
    [Google Scholar]
  12. Brändli A. W., Simons K. 1989; A restricted set of apical proteins recycle through the trans-Golgi network in MDCK cells. EMBO Journal 8:3207–3213
    [Google Scholar]
  13. Chamberlain J. P. 1979; Fluorographic detection of radioactivity in polyacrylamide gels with water-soluble fluor, sodium salicylate. Analytical Biochemistry 98:132–135
    [Google Scholar]
  14. Chatterh J., Beswick T. S. L., Chapman J. A. 1969; Electron microscopic observations of rubella virus in tissue culture cells. Journal of General Virology 4:371–377
    [Google Scholar]
  15. Clarke D. M., Loo T. W., Hui I., Chong P., Gillam S. 1987; Nucleotide sequence and in vitro expression of rubella virus 24S subgenomic messenger RNA encoding the structural proteins E1, E2 and C. Nucleic Acids Research 15:3041–3057
    [Google Scholar]
  16. Cullen B. R. 1987; Use of eukaryotic expression technology in the functional analysis of cloned genes. In Guide to Molecular Cloning Techniques vol 152 pp 684–704 Edited by Berger S. L., Kimmel A. R. San Diego: Academic Press;
    [Google Scholar]
  17. Di Guan C., Li P., Riggs P. D., Inouye H. 1988; Vectors that facilitate the expression and purification of foreign proteins in Eschericia coli by fusion to maltose binding protein. Gene 67:21–30
    [Google Scholar]
  18. Dominguez G., Wang C. Y., Frey T. K. 1990; Sequence of the genome RNA of rubella virus: evidence for genetic rearrangement during togavirus evolution. Virology 177:225–238
    [Google Scholar]
  19. Edwards M. R., Cohen S. M., Bruno M., Deibel R. 1969; Micromorphological aspects of the development of rubella virus in BHK-21 cells. Journal of Virology 3:439–444
    [Google Scholar]
  20. Graeve L., Drickamer K., Rodriguez-Boulan E. 1989; Polarized endocytosis by Madin-Darby canine kidney cells transfected with functional chicken liver glycoprotein receptor. Journal of Cell Biology 109:2809–2816
    [Google Scholar]
  21. Graeve L., Patzak A., Drickamer K., Rodriguez-Boulan E. 1990; Polarized expression of functional rat liver asialoglycoprotein receptor in transfected Madin-Darby canine kidney cells. Journal of Biological Chemistry 265:1216–1224
    [Google Scholar]
  22. Hamvas J. J., Ugovsek S., Iwakata S., Labzoffsky N.A. 1969; Virus particles in rubella-infected tissue cultures. Archiv fur die gesamte Virusforschung 26:287–294
    [Google Scholar]
  23. Hänggi M., Bannwarth W., Stunnenberg H. G. 1986; Conserved TAAAT motif in vaccinia virus late promoters: overlapping TATA box and site of transcription initiation. EMBO Journal 5:1071–1076
    [Google Scholar]
  24. Hemphill L. M., Forng R., Abernathy E. S., Frey T. K. 1988; Time course of virus-specific macromolecular synthesis during rubella infection in Vero cells. Virology 162:66–75
    [Google Scholar]
  25. Higashi N. 1973; Electron microscopy of viruses in thin sections of cells grown in culture. Progress in Medical Virology 15:331–379
    [Google Scholar]
  26. Hobman T. C., Gillam S. 1989; In vitro and in vivo expression of rubella virus glycoprotein E2: the signal peptide is contained in the C-terminal region of capsid protein. Virology 173:241–250
    [Google Scholar]
  27. Hobman T. C., Shukin R., Gillam S. 1988; Translocation of rubella virus glycoprotein E1 into the endoplasmic reticulum. Journal of Virology 62:4259–4264
    [Google Scholar]
  28. Hobman T. C., Lundström M. L., Gillam S. 1990; Processing and intracellular transport of rubella virus structural proteins in COS cells. Virology 178:122–133
    [Google Scholar]
  29. Holmes I. H., Wark M. C., Jack I., Grutzner J. 1968; Identification of two possible types of virus particle in rubella-infected cells. Journal of General Virology 2:37–42
    [Google Scholar]
  30. Ho-Terry L., Cohen A. 1982; Rubella virion polypeptides: characterization by polyacrylamide gel electrophoresis, isoelectric focusing and peptide mapping. Archives of Virology 72:47–54
    [Google Scholar]
  31. Howell K. E., Palade G. E. 1982; Hepatic Golgi fractions resolved into membrane and content fractions. Journal of Cell Biology 92822–832
    [Google Scholar]
  32. Jackson M. R., Nilsson T., Peterson P. A. 1990; Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO Journal 9:3153–3162
    [Google Scholar]
  33. Kalkkinen N., Oker-Blom C., Pettersson R. F. 1984; Three genes code for rubella virus structural proteins E1, E2a, E2b and C. Journal of General Virology 65:1549–1557
    [Google Scholar]
  34. Kieny M. P., Lathe R., Drillien R., Spehner D., Skory S., Schmitt D., Wiktor T., Koprowski H., Lecocq J. P. 1984; Expression of rabies virus glycoprotein from a recombinant vaccinia virus. Nature, London 312:163–166
    [Google Scholar]
  35. Kondor-Koch C., Riedel H., Söderberg K., Garoff H. 1982; Expression of the structural proteins of Semliki Forest virus from cloned cDNA microinjected into the nucleus of baby hamster kidney cells. Proceedings of the National Academy of Sciences U.S.A. 79:4525–4529
    [Google Scholar]
  36. Kondor-Koch C., Burke B., Garoff H. 1983; Expression of Semliki Forest virus proteins from cloned complementary DNA. I. The fusion activity of the spike glycoprotein. Journal of Cell Biology 97:644–651
    [Google Scholar]
  37. Kouri G., Aguilera A., Rodriquez P., Korolev M. 1974; A study of microfoci and inclusion bodies produced by rubella virus in the Rk-13 cell line. Journal of General Virology 22:73–80
    [Google Scholar]
  38. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227:680–685
    [Google Scholar]
  39. Lamb J. E., Ray F., Ward J. H., Kushner J. P., Kaplan J. 1983; Internalization and subcellular localization of transferrin receptors in HeLa cells. Journal of Biological Chemistry 258:8751–8758
    [Google Scholar]
  40. Lazarovits J., Shia S.-P., Ktistakis N., Lee M. -S., Bird C., Roth M. G. 1990; The effects of foreign transmembrane domains on the biosynthesis of the influenza virus hemagglutinin. Journal of Biological Chemistry 265:4760–4767
    [Google Scholar]
  41. Lisanti M. P., Rodriguez-Boulan E. 1990; Glycophospholipid membrane anchoring provides clues to the mechanism of protein sorting in polarized epithelial cells. Trends in Biochemical Sciences 15:113–118
    [Google Scholar]
  42. Lisanti M. P., Sargiacomo M., Graeve L., Saltiel A. R., Rodriguez-Boulan E. 1988; Polarized apical distribution of glycosyl-phosphatidylinositol-anchored proteins in a renal cell line. Proceedings of the National Academy of Sciences, U.S.A. 85:9557–9561
    [Google Scholar]
  43. Lisanti M. P., Le Bivic A., Sargiacomo M., Rodriguez-Boulan E. 1989; Steady-state distribution and biogenesis of endogenous Madin-Darby canine kidney glycoproteins: evidence for intracellular sorting and polarized cell surface delivery. Journal of Cell Biology 109:2117–2127
    [Google Scholar]
  44. Lobigs M., Zhao H., Garoff H. 1990; Function of Semliki Forest virus E3 peptide in virus assembly: replacement of E3 with an artificial signal peptide abolishes spike heterodimerization and surface expression of E1. Journal of Virology 64:4346–4355
    [Google Scholar]
  45. Lundström M. L., Mauracher C. A., Tingle A. J. 1991; Characterization of carbohydrates linked to rubella virus glycoprotein E2. Journal of General Virology 72:843–850
    [Google Scholar]
  46. McCombs R. M., Brunschwig J. P., Rawls W. E. 1968; Morphology of rubella virus. Experimental and Molecular Pathology 9:27–33
    [Google Scholar]
  47. McDonald H., Hobman T. C., Gillam S. 1991; The influence of capsid protein cleavage on the processing of E2 and E1 glycoproteins of rubella virus. Virology 183:52–60
    [Google Scholar]
  48. Machamer C., Rose J. K. 1987; A specific transmembrane domain of a coronavirus E1 glycoprotein is required for its retention in the Golgi region. Journal of Cell Biology 105:1205–1214
    [Google Scholar]
  49. Machamer C. E., Mentone S. A., Rose J. K., Farquhar M. G. 1990; The E1 glycoprotein of an avian coronavirus is targeted to the cis Golgi complex. Proceedings of the National Academy of Sciences, U.S.A. 87:6944–6948
    [Google Scholar]
  50. Maley F., Trimble R. B., Tarentino A. L., Plummer T. H. Jr 1989; Characterization of glycoproteins and their associated oligosaccharides through the use of endoglycosidases. Analytical Biochemistry 180:195–204
    [Google Scholar]
  51. Marr L. D., Sanchez A., Frey T. K. 1991; Efficient in vitro translation and processing of the rubella virus structural proteins in the presence of microsomes. Virology 180:400–405
    [Google Scholar]
  52. Maruyama T., Gojobori T., Aota S., Ikemura T. 1986; Codon usage tabulated from the GenBank genetic sequence data. Nucleic Acids Research14 (supplement) r151–r197
    [Google Scholar]
  53. Matter K., Brauchbar M., Bucher K., Hauri H. -P. 1990; Sorting of endogenous plasma membrane proteins occurs from two sites in cultured human intestinal epithelial cells (Caco-2). Cell 60:429–437
    [Google Scholar]
  54. Moss B., Flexner C. 1987; Vaccinia virus expression vectors. Annual Review of Immunology 5:305–324
    [Google Scholar]
  55. Murphy F. A., Halonen P. E., Harrison A. K. 1968; Electron microscopy of the development of rubella virus in BHK-21 cells. Journal of Virology 2:1223–1227
    [Google Scholar]
  56. Nakhasi H. L., Meyer B. C., Liu T. Y. 1986; Rubella virus cDNA. Sequence and expression of E1 envelope protein. Journal of Biological Chemistry 261:16616–16621
    [Google Scholar]
  57. Neu H. C., Heppel L. A. 1965; The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. Journal of Biological Chemistry 240:3685–3692
    [Google Scholar]
  58. Oker-Blom C. 1984; The gene order for rubella virus structural proteins is NH2-C-E2-E1-COOH. Journal of Virology 51:964–973
    [Google Scholar]
  59. Oker-Blom C., Kalkkinen N., Kääriäinen L., Pettersson R. F. 1983; Rubella virus contains one capsid protein and three envelope glycoproteins, E1, E2a, and E2b. Journal of Virology 46:964–973
    [Google Scholar]
  60. Oker-Blom C., Ulmanen I., Kääriäinen L., Pettersson R. F. 1984; Rubella virus 40S genome RNA specifies a 24S subgenomic mRNA that codes for a precursor to structural proteins. Journal of Virology 49:403–408
    [Google Scholar]
  61. Oshiro L. S., Schmidt N. J., Lennette E. H. 1969; Electron microscopic studies of rubella virus. Journal of General Virology 5:205–210
    [Google Scholar]
  62. Pääbo S., Bhat B. M., Wold W. S., Peterson P. 1987; A short sequence in the COOH-terminus makes an adenovirus membrane glycoprotein a resident of the endoplasmic reticulum. Cell 50:311–317
    [Google Scholar]
  63. Pathak R. K., Merkle R. K., Cummings R. D., Goldstein J. L., Brown M. S., Anderson R. G. W. 1988; Immunocytochemical localization of mutant low density lipoprotein receptors that fail to reach the Golgi complex. Journal of Cell Biology 106:1831–1841
    [Google Scholar]
  64. Patrizi G., Middlekamp J. N. 1970; Development and changes of annulate lamellae complexes in rubella virus-infected RK-13 cells. Journal of Ultrastructure Research 31:407–423
    [Google Scholar]
  65. Payment P., Ajdukovic D., Pavilanis P. 1975; Le virus de la rubeole. II. Replication dans les cellules Vero et effets de 1’actinomycine et du cycloheximide. Canadian Journal of Microbiology 21:710–717
    [Google Scholar]
  66. Sanchez A., Frey T. K. 1991; Vaccinia-vectored expression of the rubella virus structural proteins and characterisation of the E1 and E2 glycosidic linkages. Virology 183:636–646
    [Google Scholar]
  67. Saraste J., Palade G. E., Farquhar M. G. 1987; Antibodies to rat pancreas Golgi subfractions: identification of a 58-kD cis-Golgi protein. Journal of Cell Biology 105:2021–2029
    [Google Scholar]
  68. Sargiacomo M., Lisanti M. P., Graeve L., Le Bivic A., Rodriguez-Boulan E. 1989; Integral and peripheral protein composition of the apical and basolateral membrane domains in MDCK cells. Journal of Membrane Biology 107:277–286
    [Google Scholar]
  69. Schmidt M. F. G., Schlesinger M. J. 1980; Relation of fatty acid attachment to the translation and maturation of vesicular stomatitis and Sindbis virus membrane glycoproteins. Journal of Biological Chemistry 255:3334–3339
    [Google Scholar]
  70. Stephens E. B., Compans R. W., Earl P., Moss B. 1986; Surface expression of viral glycoproteins is polarized in epithelial cells infected with recombinant vaccinia viral vectors. EMBO Journal 5:237–245
    [Google Scholar]
  71. Stephens P. E., Cockett M. I. 1989; The construction of a highly efficient and versatile set of mammalian expression vectors. Nucleic Acids Research 17:7110
    [Google Scholar]
  72. Suomalainen M., Garoff H., Baron M. D. 1990; The E2 signal sequence of rubella virus remains part of the capsid protein and confers membrane association in vitro. Journal of Virology 64:5500–5509
    [Google Scholar]
  73. Timm B., Kondor-Koch C., Lehrach H., Riedel H., Edström J. -E., Garoff H. 1983; Expression of viral membrane proteins from cloned cDNA by microinjection into eukaryotic cell nuclei. Methods in Enzymology 96:496–511
    [Google Scholar]
  74. Toivonen V., Vainionpää R., Salmi A., Hyypiä T. 1983; Glycopolypeptides of rubella virus: brief report. Archives of Virology 77:91–95
    [Google Scholar]
  75. Tooze S. A., Tooze J., Warren G. 1988; Site of addition of N-acetyl-galactosamine to the E1 glycoprotein of mouse hepatitis virus-A59. Journal of Cell Biology 106:1475–1487
    [Google Scholar]
  76. Tuchinda P., Nii S., Sasada T., Naito T., Ono N., Chatiyanon K. 1966; Electron microscopy of rubella-infected BHK21 and Vero cells. Biken Journal 12:201–219
    [Google Scholar]
  77. Van Meer G. 1989; Lipid traffic in animal cells. Annual Review of Cell Biology 5:247–275
    [Google Scholar]
  78. Von Bonsdorff C. -H., Vaheri A. 1969; Growth of rubella virus in BHK21 cells: electron microscopy of morphogenesis. Journal of General Virology 5:47–51
    [Google Scholar]
  79. Von Heijne G. 1983; Patterns of amino acids near signal-sequence cleavage sites. European Journal of Biochemistry 133:17–21
    [Google Scholar]
  80. Waxham M. N., Wolinsky J. S. 1983; Immunochemical identification of rubella virus hemagglutinin. Virology 126:194–203
    [Google Scholar]
  81. Zerial M., Suomalainen M., Zanetti S. M., Schneider C., Garoff H. 1987; Phosphorylation of the human transferrin receptor by protein kinase C is not required for endocytosis and recycling in mouse 3T3 cells. EMBO Journal 6:2661–2667
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-73-5-1073
Loading
/content/journal/jgv/10.1099/0022-1317-73-5-1073
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error