1887

Abstract

The biological role of a leucine zipper motif present in the measles virus fusion (F) protein has been investigated. This motif is present in all paramyxovirus F proteins, all coronavirus spike proteins and many if not all retrovirus envelope proteins. By analogy to its role in certain transcription factors, it has been suggested that the motif may be responsible for the oligomerization of these viral membrane proteins. In this study, one, two or four heptadic leucines in the motif were substituted using site-directed mutagenesis. We found that fusion is prevented when all four heptadic leucines present in the motif are mutated whereas cellular transport and the oligomeric state of the F protein are unaffected.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-73-7-1703
1992-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/73/7/JV0730071703.html?itemId=/content/journal/jgv/10.1099/0022-1317-73-7-1703&mimeType=html&fmt=ahah

References

  1. Britton P. 1991; Coronavirus motif. Nature, London 353:394
    [Google Scholar]
  2. Buckland R, Wild F. 1989; Leucine zipper extends. Nature, London 338:547
    [Google Scholar]
  3. Buckland R., Gerald C., Barker R., Wild T. F. 1987; Fusion glycoprotein of measles virus: nucleotide sequence of the gene and comparison with other paramyxoviruses. Journal of General Virology 68:1695–1703
    [Google Scholar]
  4. Collins P., Mottet G. 1991; Post-translational processing and oligomerization of the fusion glycoprotein of human respiratory syncytial virus. Journal of General Virology 72:3095–3101
    [Google Scholar]
  5. Crick F. H. C. 1953; The packing of α helices: simple coiled coils. Acta crystallographica 6:689–697
    [Google Scholar]
  6. De Vries P., van Binnendijk R. S., van der Marel P., van Wezel A. L., Voorma H. O., Sundquist B., UytdeHaag F. G. C. M., Osterhaus A. D.M. E. 1988; Measles virus fusion protein presented in an immune-stimulating complex (iscom) induces haemolysis-inhibiting and fusion-inhibiting antibodies, virusspecific T cells and protection in mice. Journal of General Virology 69:549–559
    [Google Scholar]
  7. Delwart E., Mosialos G. 1990; Retroviral envelope glycoproteins contain a leucine zipper-like repeat. AIDS Research and Human Retroviruses 6:703–706
    [Google Scholar]
  8. Drillien R., Spehner D., Kirn A., Giraudon P., Buckland R., Wild F., Lecocq J.-P. 1988; Protection of mice from fatal measles encephalitis by vaccination with vaccinia virus recombinants encoding either the hemagglutinin or fusion proteins. Proceedings of the National Academy of Sciences, U.S.A. 85:1252–1256
    [Google Scholar]
  9. Falkner F., Moss B. 1988; E. coli gpt gene provides dominant selection for vaccinia virus open-reading frame expression vectors. Journal of Virology 62:1849–1854
    [Google Scholar]
  10. Gething M.-J., Doms R., York D., White J. 1986a; Studies on the mechanism of membrane fusion: site-specific mutagenesis of the hemagglutinin of influenza virus. Journal of Cell Biology 102:11–23
    [Google Scholar]
  11. Gething M. J., McCammon K., Sambrook J. 1986b; Expression of wild-type and mutant forms of influenza hemagglutinin: the role of folding in intracellular transport. Cell 46:939–950
    [Google Scholar]
  12. Henderson R., Unwin P. N. T. 1975; Three-dimensional model of purple membrane obtained by electron microscopy. Nature, London 257:28–32
    [Google Scholar]
  13. Hope I., Struhl K. 1987; GCN4, a eukaryotic transcriptional activator protein, binds as a dimer to target DNA. EMBO Journal 6:2781–2784
    [Google Scholar]
  14. Kouzarides T., Ziff E. 1988; The role of the leucine zipper in the fos-jun interaction. Nature, London 336:646–651
    [Google Scholar]
  15. Kreis T., Lodish H. 1986; Oligomerization is essential for transport of vesicular stomatitis viral glycoprotein to the cell surface. Cell 46:929–937
    [Google Scholar]
  16. Landschultz W., Johnson P., McKnight S. 1988; The leucine zipper:an hypothetical structure common to a new class of DNA binding proteins. Science 240:1759–1764
    [Google Scholar]
  17. Landschultz W., Johnson P., McKnight S. 1989; The DNA binding domain of the rat liver nuclear protein C/EBP is bipartite. Science 243:1681–1688
    [Google Scholar]
  18. Lear J. D., Wasserman Z. R., DeGrado W. F. 1988; Synthetic amphiphilic peptide models for protein ion channels. Science 240:1177–1181
    [Google Scholar]
  19. Malvoisin E., Wild F. 1990; Contribution of measles virus fusion protein in protective immunity: anti-F monoclonal antibodies neutralize virus infectivity and protect mice against challenge. Journal of Virology 64:5160–5162
    [Google Scholar]
  20. Ojcius D., Young J. 1991; Cytolytic pore-forming proteins and peptides: is there a common structural motif. Trends in Biological Sciences 16:225–229
    [Google Scholar]
  21. O’Shea E., Rutkowski R., Kim P. 1989; Evidence that the leucine zipper is a coiled-coil. Science 243:538–543
    [Google Scholar]
  22. Sechoy O., Philpott J., Bienvenue A. 1987; F-protein–F–protein interactions within the Sendai virus identified by native bonding on chemical cross-linking. Journal of Biological Chemistry 262:11519–11523
    [Google Scholar]
  23. Spruce A., Iwata A., Almers W. 1991; The first milliseconds of the pore formed by a fusogenic viral envelope protein during membrane fusion. Proceedings of the National Academy of Sciences, U.S.A 88:3623–3627
    [Google Scholar]
  24. Stegmann T., Doms R., Helenius A. 1989; Protein-mediated membrane fusion. Annual Review of Biophysics and Biophysical Chemistry 18:187–121
    [Google Scholar]
  25. Stunnenberg H., Lange H., Philipson L., van Miltenburg R., van der Vliet P. 1988; High expression of functional adenovirus DNA polymerase and precursor terminal protein using recombinant vaccinia virus. Nucleic Acids Research 16:2431–2444
    [Google Scholar]
  26. Tucker S., Srinivas R., Compans R. 1991; Molecular domains involved in oligomerization of the Friend murine leukemia virus envelope protein. Virology 185:710–720
    [Google Scholar]
  27. White J. 1990; Viral and cellular fusion proteins. Annual Review of Physiology 52:675–697
    [Google Scholar]
  28. Wild T. F., Malvoisin E., Buckland R. 1991; Measles virus: both the haemagglutinin and fusion glycoproteins are required for fusion. Journal of General Virology 72:439–442
    [Google Scholar]
  29. Wiley D. C., Skehel J. J. 1987; The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annual Review of Biochemistry 56:365–394
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-73-7-1703
Loading
/content/journal/jgv/10.1099/0022-1317-73-7-1703
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error