1887

Abstract

Herpes simplex virus type 1 (HSV-1) is transcriptionally active during latent infection in human peripheral sensory ganglia. Viral gene expression includes the latency-associated transcripts (LATs) which have been linked to the ability of the virus to resume replication and reactivate. However, the molecular basis of reactivation and the mechanisms of action of these transcripts are unknown. In order to study these parameters, an reactivation model is needed. We investigated use of the mouse as the experimental animal, modifying the route of infection, the viral strain and the reactivation protocol. Following administration of human immunoglobulin 1 day prior to corneal infection, no infectious virus was detected in trigeminal ganglia (TG). However, latency was established in all infected animals as indicated by explant reactivation of TG, and reactivation was achieved in 30 to 40% of them. DNA quantification revealed that TG of immunized mice contained more HSV-1 DNA than did those of non-immunized mice. By hybridization twice as many neuronal cells in TG of immunized mice were positive for LATs, compared with infected but non-immunized, mice. These findings suggest that suppression of primary infection facilitates reactivation by increasing HSV-1 copy number in latently infected nervous tissue.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-74-11-2487
1993-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/74/11/JV0740112487.html?itemId=/content/journal/jgv/10.1099/0022-1317-74-11-2487&mimeType=html&fmt=ahah

References

  1. Ace C. I., McKee T. A., Ryan J. M., Cameron J. M., Preston C. M. 1989; Construction and characterization of a herpes simplex virus type 1 mutant unable to transinduce immediate early gene expression. Journal of Virology 63:2260–2269
    [Google Scholar]
  2. Cohen D. M., Kosz-Vnenchak M., Jacobson J. G., Lieb D. A., Bogard C. L., Schaffer P. A., Tyler K. L., Knipe D. M. 1989); Thymidine kinase-negative herpes simplex virus mutants establish latency in mouse trigeminal ganglia but do not reactivate. Proceedings of the National Academy of Sciences, U,. S,. A 86:4736–4740
    [Google Scholar]
  3. Cook S. D., Paveloff M. J., Douce J. J., Cottingham A. J., Sedarati F., Hill J. M. 1991; Ocular herpes simplex virus reactivation in mice latently infected with latency-associated transcript mutants. Investigative Ophthalmology and Visual Science 5:1558–1561
    [Google Scholar]
  4. Efstathiou S., Kemp S., Darby G., Minson A. C. 1989; The role of herpes simplex virus type 1 thymidine kinase in pathogenesis. Journal of General Virology 70:869–879
    [Google Scholar]
  5. Fraser N. W., Spivack J. G., Wroblewska Z., Block T., Desh-Mane S. L., Valyi Nagy T., Natarajan R., Gesser R. M. 1991; A review of the molecular mechanism of HSV-1 latency. Current Eye Research10 (Suppl.) 1–14
    [Google Scholar]
  6. Gominak S., Cros D., Paydarfar D. 1990; Herpes simplex labialis and trigeminal neuropathy. Neurology 40:151–152
    [Google Scholar]
  7. Haase A., Brahic M., Stowring L., Blum H. 1984; Detection of viral nucleic acids by in situ hybridization. In Methods in Virology vol 7 pp 189–226 Edited by Maromorosch K., Koprowski H. New York: Academic Press;
    [Google Scholar]
  8. Hill T. J., Field J. H., Blyth W. A. 1975; Acute and recurrent infection with herpes simplex virus in the mouse; a model for studying latency and recurrent disease. Journal of General Virology 28:341–353
    [Google Scholar]
  9. Hill T. J., Blyth W. A., Harbour D. A. 1978; Trauma to the skin causes recurrence of herpes simplex in the mouse. Journal of General Virology 39:21–28
    [Google Scholar]
  10. Hill J. M., Sedarati F., Javier R. T., Wagner E. K., Stevens J. G. 1990; Herpes simplex virus latent phase transcription facilitates in vivo reactivation. Virology 174:117–125
    [Google Scholar]
  11. Javier R. T., Stevens J. G., Dissette V. B., Wagner E. K. 1988; A herpes simplex virus transcript abundant in latently infected neurons is dispensable for establishment of the latent state. Virology 166:254–257
    [Google Scholar]
  12. Lieb D. A., Bogard C. L., Kosz-Vnenchak M., Hicks K. A., Coen D. M., Knipe D. M., Schaffer P. A. 1989; A deletion mutant of the latency-associated transcript of herpes simplex virus type 1 reactivates from latent state with reduced frequency. Journal of Virology 63:2893–2900
    [Google Scholar]
  13. Mitchell W. J., Steiner I., Brown S. M., MacLean A. R., Subak-Sharpe J. H., Fraser N. W. 1990; A herpes simplex virus type 1 variant, deleted in the promoter region of the latency-associated transcripts, does not produce any detectable minor RNA species during latency in the mouse trigeminal ganglia. Journal of General Virology 71:953–957
    [Google Scholar]
  14. Nesburn A. B., Elliot J. M., Leibowitz H. M. 1967; Spontaneous reactivation of experimental herpes simplex keratitis in rabbits. Archives of Ophthalmology 78:523–529
    [Google Scholar]
  15. Rock D. L., Fraser N. W. 1983; Detection of HSV-1 genome in the central nervous system of latently infected mice. Nature, London 302:523–525
    [Google Scholar]
  16. Roizman B., Sears A. E. 1990; Herpes simplex viruses and their replication. In Virology 2nd edn pp 1795–1841 Edited by Fields B. N., Knipe D. M. New York: Raven Press;
    [Google Scholar]
  17. Russell J., Stow N. D., Stow E. C., Preston C. M. 1987; Herpes simplex virus genes involved in latency in vitro. Journal of General Virology 68:3009–3018
    [Google Scholar]
  18. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual 2nd edn New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  19. Sawetell N. M., Thompson R. L. 1992; Herpes simplex virus type 1 latency-associated transcription unit promotes anatomical site-dependent establishment and reactivation from latency. Journal of Virology 66:2157–2169
    [Google Scholar]
  20. Sears A. E., Halliburton I. W., Meignier B., Silver S., Roizman B. 1985; Herpes simplex virus mutant deleted in the a22 gene: growth and gene expression in permissive and restrictive cells and establishment of latency in mice. Journal of Virology 55:338–346
    [Google Scholar]
  21. Sekizawa T., Openshaw H., Wohlenberg C., Notkins A. L. 1980; Latency of herpes simplex virus in absence of neutralizing antibody: model for reactivation. Science 210:1026–1028
    [Google Scholar]
  22. Shimeld C., Hill T., Easty D. 1989; An improved model of recurrent herpetic eye disease in mice. Current Eye Research 8:1193–1205
    [Google Scholar]
  23. Shimomura Y., Gangarosa L. P., Kataoka M., Hill J. M. 1983; HSV-1 shedding by iontophoresis of 6-hydroxydopamine followed by topical epinephrine. Investigative Ophthalmology and Visual Science 24:1588–1594
    [Google Scholar]
  24. Spivack J. G., Fraser N. W. 1987; Detection of herpes simplex type 1 transcripts during latent infection in mice. Journal of Virology 61:3841–3847
    [Google Scholar]
  25. Steiner I., Kennedy P. G. E. 1991; Herpes simplex virus latency in the nervous system – a new model. Neuropathology and Applied Neurobiology 17:433–140
    [Google Scholar]
  26. Steiner I., Kennedy P. G. E. 1993; The molecular biology of herpes simplex virus type 1 latency in the nervous system. Molecular Neurobiology (in press)
    [Google Scholar]
  27. Steiner I., Spivack J. G., O’Boyle D. R., Lavi E., Fraser N. W. 1988; Latent herpes virus type 1 transcription in human trigeminal ganglia. Journal of Virology 62:3493–3496
    [Google Scholar]
  28. Steiner I., Spivack J. G., Jackson A., Lavi E., Fraser N. W. 1989a; Effects of lipofuscin on in situ hybridization in human neuronal tissue. Journal of Virology Methods 24:1–10
    [Google Scholar]
  29. Steiner I., Spivack J. G., Lirette R. P., Brown S. M., MacLean A. R., Subak-Sharpe J., Fraser N. W. 1989b; Herpes simplex virus type 1 latency-associated transcripts are evidently not essential for latent infection. EM BO Journal 8:505–511
    [Google Scholar]
  30. Steiner I., Spivack J. G., Deshmane S. L., Ace C. I., Preston C. M., Fraser N. W. 1990; A herpes simplex virus type 1 mutant containing a non-transinducing Vmw65 protein establishes latent infection in vivo in the absence of viral replication and reactivates efficiently from explanted trigeminal ganglia. Journal of Virology 64:1630–1638
    [Google Scholar]
  31. Stevens J. G. 1989; Human herpesviruses: a consideration of the latent state. Microbiological Reviews 53:318–322
    [Google Scholar]
  32. Stevens J. G., Wagner E. K., Devi-Rao G. B., Cook M. L., Feldman L. T. 1987; RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science 235:1056–1059
    [Google Scholar]
  33. Stroop W. G., Rock D. L., Fraser N. W. 1984; Localization of herpes simplex virus in the trigeminal and olfactory systems in the mouse central nervous system during acute and latent infections by in situ hybridization. Laboratory Investigation 51:27–38
    [Google Scholar]
  34. Trousdale M. D., Steiner I., Spivack J. G., Deshmane S. L., Brown S. M., MacLean A. R., Subak-Sharpe J. H., Fraser N. W. 1991; In vivo and in vitro reactivation impairment of a herpes simplex virus type 1 latency-associated transcript variant in a rabbit eye model. Journal of Virology 65:6989–6993
    [Google Scholar]
  35. Whitley R. J. 1990; Herpes simplex viruses. In Virology 2nd edn pp 1843–1886 Edited by Fields B. N., Knipe D. M. New York: Raven Press;
    [Google Scholar]
  36. Willey D. E., Trousdale M. D., Nesburn A. B. 1984; Reactivation of murine latent HSV infection by epinephrine iontophoresis. Investigative Ophthalmology and Visual Science 25:945–950
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-74-11-2487
Loading
/content/journal/jgv/10.1099/0022-1317-74-11-2487
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error