1887

Abstract

It is not fully understood how antigenic drift of the haemagglutinin of type A influenza virus in man occurs in the presence of the expected polyclonal antibody response to the five antigenic sites, A to E. Here we show that 12 % (11/92) of sera from mice which had mounted a secondary immune response to inactivated influenza virus were able to select escape mutants. No escape mutant was selected with serum from nonimmunized mice (0/65). Selection required only a single passage, and escape mutants were identified by their reaction with monoclonal antibodies (MAbs); all but one had altered reactivity at site A. Most of the site A escape mutants (7/10) were conventional in character and did not react in haemagglutination-inhibition (HI) or neutralization assays with the identifying MAb. The HA genes of three of these were part sequenced and had a predicted single amino acid substitution (Gly-144 → Glu) in site A. The other escape mutants (3/10) had a small (2-fold) reduction in HI and neutralization to the site A MAb, but no amino acid substitution in site A. The final mutant was a conventional site B escape mutant. To model antisera which selected escape mutants, we constructed ‘pseudo-immune sera’ using mixtures of two neutralizing MAbs in which the first MAb was held at a constant high concentration (1000 HIU/ml). Escape mutants could be selected to the first MAb when the titre of the second MAb was reduced to a low but still inhibiting concentration (1 to 3 HIU/ml). Mixtures of three MAbs also selected escape mutants with similar facility provided that the second and third MAbs were reduced to a similar low concentration. Thus it is possible that the ability of an antiserum to select escape mutants is due to the neutralizing antibody response being biased to an epitope/cross-reacting epitopes within a single antigenic site. However, when escape mutants were reacted in HI assay with their selecting antiserum, the maximum difference from the titre with virus was 75 %. The findings of this study may be relevant to the understanding of antigenic drift in type A human influenza virus, and to immune-driven antigenic variation in other virus infections.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-75-12-3493
1994-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/75/12/JV0750123493.html?itemId=/content/journal/jgv/10.1099/0022-1317-75-12-3493&mimeType=html&fmt=ahah

References

  1. Albert J., Abrahamsson B., Nagy K., Aurelius E., Gaines H., Nyström G., Fenyö E. M. 1990; Rapid development of isolate-specific neutralizing antibodies after primary HIV-1 infection and consequent emergence of virus variants which resist neutralization by autologous sera. AIDS 4:107–112
    [Google Scholar]
  2. Archetti I., Horsfall F. L. 1950; Persistent antigenic variation of influenza A viruses after incomplete neutralization in ovo with heterologous immune serum. Journal of Experimental Medicine 92:441–462
    [Google Scholar]
  3. Arendrup M., Nielsen C., Hansen J. -E. S., Pedersen C., Mathiesen L., Nielsen J. O. 1992; Autologous HIV-1 neutralizing antibodies: emergence of neutralization-resistant escape virus and subsequent development of escape virus neutralizing antibodies. Journal of Acquired Immune Deficiency Syndromes 5:303–307
    [Google Scholar]
  4. Arendrup M., Sönnerborg A., Svennerholm B., Åkerblom L., Nielsen C., Clausen H., Olofsson S., Nielsen J. O., Hansen J.-E. S. 1993; Neutralizing antibody response during human immunodeficiency virus type 1 infection: type and group specificity and viral escape. Journal of General Virology 74:855–863
    [Google Scholar]
  5. Brown L. E., Muray J. M., White D. O., Jackson D. C. 1990; An analysis of the properties of monoclonal antibodies directed to epitopes on influenza virus hemagglutinin. Archives of Virology 114:1–26
    [Google Scholar]
  6. Carman W. F., Zanetti A. R., Karayiannis P., Waters J., Manzillo G., Tanzi E., Zuckerman A. J., Thomas H. C. 1990; Vaccine escape mutants OF hepatitis B virus. Lancet 336:325–329
    [Google Scholar]
  7. Clarke S. H., Staudt L. M., Kavaler J., Schwartz D., Gerhard W. U., Weigert M. G. 1990; V region gene usage and somatic mutation in the primary and secondary responses to influenza virus haemagglutinin. Journal of Immunology 144:2795–2801
    [Google Scholar]
  8. Dimmock N. J. 1993; Neutralization of animal viruses. Current Topics in Microbiology and Immunology 183:1–149
    [Google Scholar]
  9. Fazekas De St Groth S. 1978; Antigenic, adaptive and adsorbtive variants of the influenza A hemagglutinin. In Topics in Infectious Disease 3 pp 25–18 Laver W. G., Bachmayer H., Weil R. Edited by Vienna: Springer-Verlag;
    [Google Scholar]
  10. Haaheim L. R. 1980; Haemagglutinin-inhibition antibodies in human sera to an antigenic mutant of influenza A/Texas/1/77 (H3N2) virus obtained in vitro. Acta Pathologica, Microbiologica et Immuno-logica Scandinavica B88:351–353
    [Google Scholar]
  11. Harrison T. J., Zuckerman A. J. 1992; Variants OF hepatitis B virus. Vox Sanguinis 63:161–167
    [Google Scholar]
  12. Harrison T. J., Zuckerman A. J. 1993; Variant hepatitis B and D viruses. In Hepatitis B Vaccines in Clinical Practice pp 337–349 Marcel Dekker;
    [Google Scholar]
  13. Harrison T. J., Hopes E. A., Oon C. J., Zanetti A. R., Zuckerman A. J. 1991; Independent emergence of a vaccine-induced escape mutant of hepatitis B virus. Journal of Hepatology 13:S105–S107
    [Google Scholar]
  14. Hyslop N. ST G. 1965; Isolation of variant strains from foot-and- mouth disease virus propagated in cell cultures containing antiviral serum. Journal of General Microbiology 41:135–142
    [Google Scholar]
  15. Hyslop N.ST G, Fagg R. H. 1965; Isolation of variants during passage of a strain of foot-and-mouth disease virus in partly immunized cattle. Journal of Hygiene 63:357–368
    [Google Scholar]
  16. Isaacs A. 1951; The 1951 influenza virus. Proceedings of the Royal Society of Medicine 44:801–803
    [Google Scholar]
  17. Kilbourne E. D. 1987 Influenza New York: Plenum Medical Book Co;
    [Google Scholar]
  18. Klimov A., Prösch S., Schäfer J., Bucher D. 1992; Subtype H7 influenza viruses: comparative antigenic and molecular analysis of the HA-, M-, and NS-genes. Archives of Virology 122:143–161
    [Google Scholar]
  19. Laver W. G., Webster R. G. 1968; Selection of antigenic mutants of influenza viruses. Isolation and peptide mapping of their hemagglutinating proteins. Virology 34:193–202
    [Google Scholar]
  20. Laver W. G., Gerhard W., Webster R. G., Frenkel M. E., Air G. M. 1979a; Antigenic drift in influenza A virus: peptide mapping and antigenic analysis of A/PR/8/34 (H0N1) variants selected with monoclonal antibodies. Proceedings of the National Academy of Sciences U.S.A: 761425–1429
    [Google Scholar]
  21. Laver W. G., Air G. M., Webster R. G., Gerhard W., Ward C. W., Dopheide T. A. A. 1979b; Antigenic drift in type A influenza virus: sequence differences in the hemagglutinin of Hong Kong (H3N2) variants selected with monoclonal antibodies. Virology 98:226–237
    [Google Scholar]
  22. Laver W. G., Air G. M., Webster R. G. 1981; Mechanism of antigenic drift in influenza virus. Amino acid sequence changes in an antigenically active region of Hong Kong (H3N2) influenza virus hemagglutinin. Journal of Molecular Biology 145:339–361
    [Google Scholar]
  23. Lubeck M. D., Schulman J. L., Palese P. 1980; Antigenic variants of influenza viruses: marked differences in the frequencies of variants selected with different monoclonal antibodies. Virology 102:458–462
    [Google Scholar]
  24. McKeating J. A., Bennett J., Zolla-Pasner S., Schutten M., Ashelford S., Leigh-Brown A., Balfe P. 1993; Resistance of a human serum-selected human immunodeficiency virus type 1 to neutralization by CD4 binding site monoclonal antibodies is conferred by a single amino acid change in gpl20. Journal of Virology 67:5216–5225
    [Google Scholar]
  25. Mcmahon G., Ehlich P., Moustafa Z. A., McCarthy L. A., Dottovio D., Tolpin M. D., Nadler P. I., Ostberg L. 1992; Genetic alterations in the gene encoding the major HBsAg: DNA and immunological analysis of recurrent HBsAg derived from monoclonal antibody-treated liver transplant patients. Hepatology 15:757–766
    [Google Scholar]
  26. Montefiori D. C., Zhou J., Barnes B., Lake D., Hersh E. M., Masuho Y., Lefkowitz L. B. 1991; Homotypic antibody responses to fresh clinical isolates of human immunodeficiency virus. Virology 182:635–643
    [Google Scholar]
  27. Munk K., Pritzer E., Kretzschmar E., Gutte B., Garten W., Klenk H. D. 1992; Carbohydrate masking of an antigenic epitope of influenza virus haemagglutinin independent of oligosaccharide size. Glycobiology 2:233–240
    [Google Scholar]
  28. Nara P. L., Smit L., Dunlop N., Hatch W., Merges M., Waters D., Kelliher J., Gallo R. C., Fischinger P. J., Goudsmit J. 1990; Emergence of virus resistant to neutralization by V3-specific antibodies in experimental human immunodeficiency virus type 1 IIIB infection of chimpanzees. Journal of Virology 64:3779–3791
    [Google Scholar]
  29. Natali A., Oxford J. S., Schild G. C. 1981; Frequency of naturally occurring antibody to influenza virus antigenic variants selected in vitro with monoclonal antibody. Journal of Hygiene 87:185–190
    [Google Scholar]
  30. Nobusawa E., Aoyama T., Kato H., Suzuki Y., Tateno Y., Nakajima K. 1991; Comparison of complete amino acid sequences and receptor-binding properties among 13 serotypes of hemagglutinins of influenza A virus. Virology 182:475–185
    [Google Scholar]
  31. Porter A., Barber C., Carey N. H., Hallewell R. A., Threlfall G., Emtage J. S. 1979; Complete nucleotide sequence of an influenza virus haemagglutinin gene from cloned DNA. Nature; London: 282471–477
    [Google Scholar]
  32. Portner A., Webster R. G., Bean W. J. 1980; Similar frequencies of antigenic variants in Sendai, vesicular stomatitis and influenza viruses. Virology 104:235–238
    [Google Scholar]
  33. Reitz M. S., Wilson C., Naugle C., Gallo R. C., Robert-Guroff M. 1988; Generation of a neutralization-resistant variant of HIV-1 is due to selection for a point mutation in the envelope gene. Cell 54:57–63
    [Google Scholar]
  34. Roberts P. C., Garten W., Klenk H. D. 1993; Role of conserved glycosylation sites in maturation and transport of influenza A virus hemagglutinin. Journal of Virology 67:3048–3060
    [Google Scholar]
  35. Rojas E. R., Carillo E., Schiappacassi M., Campos R. 1992; Modification of foot-and-mouth disease virus 01 Caseros after serial passages in the presence of antiviral polyclonal sera. Journal of Virology 66:3368–3372
    [Google Scholar]
  36. Schreiber M., Peterson H., Wachsmuth C., Müller H., Hufert F. T., Schmitz H. 1994; Antibodies of symptomatic human immunodeficiency virus type 1-infected individual are directed to the V3 domain of noninfectious and not of infectious virions present in autologous serum. Journal of Virology 68:3908–3916
    [Google Scholar]
  37. Skehel J. J., Stevens D. J., Daniels R. S., Douglas A. R., Knossow M., Wilson I. A., Wiley D. C. 1984; A carbohydrate side chain on hemagglutinin of Hong Kong influenza virus inhibits recognition by a monoclonal antibody. Proceedings of the National Academy of Sciences U.S.A.: 811779–1783
    [Google Scholar]
  38. Smith C. A., Barnett B. C., Thomas D. B., Temoltzin-Palacios F. 1991; Structural assignments of novel and immunodominant antigenic sites in the neutralizing antibody response of CBA/Ca mice to influenza virus. Journal of Experimental Medicine 173:953–959
    [Google Scholar]
  39. Staudt L. M., Gerhard W. 1983; Generation of antibody diversity in the immune response of BALB/c mice to influenza virus hemagglutinin. I. Significant variation in repertoire expression between individual mice. Journal of Experimental Medicine 157:687–704
    [Google Scholar]
  40. Sugrue R. J., Bahadur G., Zambon M. C., Hall-Smith M., Douglas A. R. 1990; Specific structural alteration of the influenza haemagglutinin by amantadine. EMBO Journal 9:3469–3476
    [Google Scholar]
  41. Taylor H. P. 1986 The interaction of influenza virus with neutralizing antibody Ph.D. thesis University of Warwick, Coventry, U.K:
    [Google Scholar]
  42. Taylor H. P., Armstrong S. J., Dimmock N. J. 1987; Quantitative relationships between an influenza virus and neutralizing antibody. Virology 159:288–298
    [Google Scholar]
  43. Tremblay M. A., Wainberg M. A. 1990; Neutralization of multiple HIV-1 isolates from a single subject by autologous sequential sera. Journal of Infectious Diseases 162:735–737
    [Google Scholar]
  44. Underwood P. A. 1984; An antigenic map of the haemagglutinin of the influenza Hong Kong subtype (H3N2), constructed using mouse monoclonal antibodies. Molecular Immunology 21:663–671
    [Google Scholar]
  45. Wang M.-L., Skehel J. J., Wiley D. C. 1986; Comparative analyses of the specificities of anti-influenza hemagglutinin antibodies in human sera. Journal of Virology 57:124–128
    [Google Scholar]
  46. Watkins B. A., Reitz M. S., Wilson C. A., Aldrich K., Davis A. E., Robert-Guroff M. 1993; Immune escape by human immunodeficiency virus type 1 from neutralizing antibodies: evidence for multiple pathways. Journal of Virology 67:7493–7500
    [Google Scholar]
  47. Webster R. G., Bean W. J., Gorman O. T., Chambers T. M., Kawaoka Y. 1992; Evolution and ecology of influenza A viruses. Microbiological Reviews 56:152–179
    [Google Scholar]
  48. Webster R. G., Laver W. G. 1980; Determination of the number of nonoverlapping antigenic areas on Hong Kong (H3N2) influenza virus hemagglutinin with monoclonal antibodies and the selection of variants with potential epidemiological significance. Virology 104:139–148
    [Google Scholar]
  49. Wiley D. C., Wilson I. A., Skehel J. J. 1981; Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature; London: 289373–378
    [Google Scholar]
  50. Wilson I. A., Cox N. J. 1990; Structural basis of immune recognition of influenza virus hemagglutinin. Annual Review of Immunology 8:737–771
    [Google Scholar]
  51. Yewdell J. W., Webster R. G., Gerhard W. U. 1979; Antigenic variation in three distinct determinants of an influenza type A haemagglutinin molecule. Nature; London: 279246–248
    [Google Scholar]
  52. Yewdell J. W., Caton A. J., Gerhard W. 1986; Selection of influenza A virus adsorptive mutants by growth in the presence of a mixture of monoclonal antihemagglutinin antibodies. Journal of Virology 57:623–628
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-75-12-3493
Loading
/content/journal/jgv/10.1099/0022-1317-75-12-3493
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error