1887

Abstract

The sequence of Rift Valley fever virus L segment that we published in a previous paper was erroneous in the 3′ -terminal region of the antigenomic RNA molecule. Here, we have shown that the L segment is in fact 6404 nucleotides long and encodes a polypeptide of 237·7K in the viral complementary sense. Sequence comparisons performed between the RNA-dependent RNA polymerases of 22 negative-stranded RNA viruses revealed the existence of two novel regions located at the amino termini of the proteins and conserved only in the polymerases of bunya- and arenaviruses. In the region conserved in all RNA-dependent polymerases, corresponding to the so-called ‘polymerase module’, we identified a new motif, designated premotif A, common to all RNA-dependent polymerases, as well as amino acids located in the region between motifs preA and A which are strictly conserved for segmented negative- stranded RNA viruses. Using the recently released coordinates of human immunodeficiency virus reverse transcriptase and the alignment between all RNA- dependent polymerases in the ‘polymerase module’, we have determined the position of the conserved residues in these polymerases and discuss their possible functions in light of the available structural information.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-75-6-1345
1994-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/75/6/JV0750061345.html?itemId=/content/journal/jgv/10.1099/0022-1317-75-6-1345&mimeType=html&fmt=ahah

References

  1. Beese L., Steitz T. A. 1991; Structural basis for the 3ʹ-5ʹ exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBO Journal 10:25–33
    [Google Scholar]
  2. Bouloy M. 1991; Bunyaviridae: genome organization and replication strategies. Advances in Virus Research 40:235–275
    [Google Scholar]
  3. Chothia C., Lesk A. M. 1986; The relation between the divergence of sequence and structure in proteins. EMBO Journal 5:823–826
    [Google Scholar]
  4. Collett M. S., Purchio A. F., Keegan K., Frasier S., Hays W., Anderson D. K., Parker M. D., Schmaljohn C., Schmidt J., Dalrymple J. M. 1985; Complete nucleotide sequence of the M RNA segment of Rift Valley fever virus. Virology 144:228–245
    [Google Scholar]
  5. De Haan P., Kormelink R., Resende R., De O., Van Poelwijk F., Peters D., Goldbach R. 1991; Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. Journal of General Virology 12:2207–2216
    [Google Scholar]
  6. Delarue M., Poch O., Tordo N., Moras D., Argos P. 1990; An attempt to unify the structure of polymerases. Protein Engineering 3:461–467
    [Google Scholar]
  7. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs fro the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  8. Elliott R. M. 1989; Nucleotide sequence analysis of the large (L) genomic RNA segment of Bunyamwera virus, the prototype of the family Bunyaviridae. Virology 173:426–436
    [Google Scholar]
  9. Elliott R. M. 1990; Molecular biology of the Bunyaviridae. Journal of General Virology 71:501–522
    [Google Scholar]
  10. Elliott R. M., Dunn E., Simons J. F., Pettersson R. F. 1992; Nucleotide sequence and coding strategy of Uukuniemi virus L RNA segment. Journal of General Virology 73:1745–1752
    [Google Scholar]
  11. Feng D. F., Doolittle R. F. 1987; Progressive sequence alignment as a prerequisite to correct phylogenetic trees. Journal of Molecular Evolution 25:351–360
    [Google Scholar]
  12. Giorgi C., Acardi L., Nicoletti L., Gro M. C., Takehara K., Hildich C., Morikawa S., Bishop D. H. L. 1991; Sequences and coding strategies of the S RNAs of Toscana and Rift Valley fever viruses compared to those of Punta Toro, Sicilian sandfly fever and Uukuniemi viruses. Virology 180:733–753
    [Google Scholar]
  13. Hsu M.-T., Parvin J. D., Gupta S., Krystal M., Palese P. 1987; Genomic RNAs of influenza viruses are held in a circular conformation in virions and in infected cells by a terminal panhandle. Proceedings of the National Academy of Sciences U.S.A.: 848140–8144
    [Google Scholar]
  14. Jacobo-Molina A., Ding J., Nanni R. G., Clark A. D., Lu X., Tantillo C., Williams R. L., Kamer G., Ferris A. L., Clark P., Hizi A., Hughes S. H., Arnold E. 1993; Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3·0 Å resolution shows bent DNA. Proceedings of the National Academy of Sciences U.S.A.: 906320–6324
    [Google Scholar]
  15. Jin H., Elliott R. M. 1991; Expression of functional Bunyamwera virus L protein by recombinant vaccinia viruses. Journal of Virology 65:4182–4189
    [Google Scholar]
  16. Jin H., Elliott R. M. 1992; Mutagenesis of the L protein encoded by Bunyamwera virus and production of monospecific antibodies. Journal of General Virology 73:2235–2244
    [Google Scholar]
  17. Kohlstaedt L. A., Wang J., Friedman J. M., Rice P. A., Steitz T. A. 1992; Crystal structure at 3·5 Å resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 256:1783–1790
    [Google Scholar]
  18. Kozak M. 1986; Point mutations define a sequence flanking the AUG initiation codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292
    [Google Scholar]
  19. Kozak M. 1987; An analysis of 5ʹ noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Research 15:8125–8131
    [Google Scholar]
  20. Krug R. M. 1981; Priming of influenza viral RNA transcription by capped heterologous RNAs. Current Topics in Microbiology and Immunology 93:125–149
    [Google Scholar]
  21. Krug R. M., St Angelo C, Broni B., Shapiro G. 1987; Transcription and replication of influenza virion RNA in the nucleus of infected cells. Cold Spring Harbor Symposia on Quantitative Biology 52:353–358
    [Google Scholar]
  22. Müller R., Argentini C., Bouloy M., Prehaud C., Bishop D. H. L. 1991; Completion of the genome sequence of Rift Valley fever phlebovirus indicates that the L RNA is negative or ambisense and codes for a putative transcriptase-replicase. Nucleic Acids Research 19:5433
    [Google Scholar]
  23. Ollis D. L., Brick P., Hamlin R., Xuong N. G., Steitz T. A. 1985; Structure of the large fragment of Escherichia coli DNA polymerase I complexed with dTMP. Nature; London: 313762–766
    [Google Scholar]
  24. Pardigon N., Vialat P., Girard M., Bouloy M. 1982; .Panhandles and hairpin structures at the termini on Germiston virus RNAs (bunyavirus). Virology 122:191–197
    [Google Scholar]
  25. Poch O., Sauvaget I., Delarue M., Tordo N. 1989; Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO Journal 8:3867–3874
    [Google Scholar]
  26. Poch O., Blumberg B. M., Bougueleret L., Tordo N. 1990; Sequence comparison of five polymerases (L proteins) of unsegmented negative-strand RNA viruses: theoretical assignment of functional domains. Journal of General Virology 71:1153–1162
    [Google Scholar]
  27. Raju R., Kolakofsky D. 1989; The ends of La Crosse virus genome and antigenome RNAs within nucleocapsids are base paired. Journal of Virology 63:122–128
    [Google Scholar]
  28. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences U.S.A.: 745463–5467
    [Google Scholar]
  29. Sousa R., Chung Y. J., Rose J. P., Wang B. C. 1993; Crystal structure of bacteriophage T7 RNA polymerase at 3-3 A resolution. Nature; London: 364593–599
    [Google Scholar]
  30. Steitz T. A. 1993; DNA and RNA-dependent DNA polymerases. Current Opinion in Structural Biology 3:31–38
    [Google Scholar]
  31. Tordo N., De Haan P., Goldbach R., Poch O. 1992; Evolution of negative-stranded RNA genomes. Seminars in Virology 3:341–357
    [Google Scholar]
  32. Wilbur W. J., Lipman D. J. 1983; Rapid similarity searches of nucleic acid and protein data banks. Proceedings of the National Academy of Sciences U.S.A.: 80726–730
    [Google Scholar]
  33. Xiong Y., Eickbush T. H. 1990; Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO Journal 9:3353–3362
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-75-6-1345
Loading
/content/journal/jgv/10.1099/0022-1317-75-6-1345
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error