1887

Abstract

Expression of the Epstein—Barr virus (EBV) latent membrane protein (LMP1) is regulated by virus- and host cell-specific factors. The EBV nuclear antigen 2 (EBNA2) has been shown to transactivate a number of viral and cellular gene promoters including the promoter for the LMP1 gene. EBNA2 is targeted to at least some of these promoters by interacting with a cellular DNA binding protein, RBP-J. In the present report we confirm and extend our previous observation that the LMP1 promoter can be activated by EBNA2 in the absence of the RBP-J-binding sequence in the LMP1 promoter regulatory region (LRS). We show that two distinct LRS regions, -106 to +40 and -176 to -136, contribute to EBNA2 responsiveness. Site-directed mutagenesis analysis of the upstream -176/-136 EBNA2 responsive element revealed that two critical -acting elements are required for full promoter function. These same elements analysed by electrophoretic mobility shift assays define two binding sites recognized by nuclear factors derived from B cells. An octamer-like sequence (-147 to -139) contained overlapping binding sites for an unidentified transcriptional repressor on the one hand and a factor(s) belonging to the POU domain family but distinct from Oct-1 and Oct-2 on the other. An adjacent purine tract (-171 to -155) held a PU.1 binding site, which was also recognized by a related factor. The results suggest that the POU domain protein and either of two PU box-binding factors bind simultaneously to LRS, creating a ternary complex that might be in part responsible for mediating the transactivation of the LMP1 promoter by EBNA2. There were no qualitative differences between EBV-negative and EBV-positive cells with regard to transcription factor binding to the octamer-like sequence and the PU.1 recognition site, as revealed by electrophoretic mobility shift assays.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-11-2679
1995-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/11/JV0760112679.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-11-2679&mimeType=html&fmt=ahah

References

  1. Abbot S. D., Rowe M., Cadwallader K., Ricksten A., Gordon J., Wang F., Rymo L., Rickinson A. B. 1990; Epstein–Barr virus nuclear antigen 2 expression of the virus-encoded latent membrane protein. Journal of Virology 64:2126–2134
    [Google Scholar]
  2. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. J., Hatfull G., Hudson G. S., Satchwell S. C., Seguin C., Tuffnell P. S., Barrell B. G. 1984; DNA sequence and expression of the B95–8 Epstein–Barr virus genome. Nature 310:207–211
    [Google Scholar]
  3. Ben-Bassat H., Goldblum N., Mitrani S., Goldblum T., Yoffey J. M., Cohen M. M., Bentwitch Z., Ramot B., Klein E., Klein G. 1977; Establishment in continuous culture of a new type of lymphocyte from a ‘Burkitt-like’ malignant lymphoma (line D. G.-75). International Journal of Cancer 19:27–33
    [Google Scholar]
  4. Cohen J. I., Wang F., Mannick J., Kieff E. 1989; Epstein–Barr virus nuclear protein 2 is a key determinant of lymphocyte transformation. Proceedings of the National Academy of Sciences, USA 86:9558–9562
    [Google Scholar]
  5. Cordier M., Calender A., Billaud M., Zimber U., Rousselet G., Pavlish O., Banchereau J., Tursz T., Bornkamm G., Lenoir G. M. 1990; Stable transfection of Epstein–Barr virus (EBV) nuclear antigen 2 in lymphoma cells containing the EBV P3HR1 genome induces expression of B-cell activation molecules CD21 and CD23. Journal of Virology 64:1002–1013
    [Google Scholar]
  6. Dignam J. D., Lebovzit R. M., Roeder R. G. 1983; Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Research 11:1475–1489
    [Google Scholar]
  7. Edlund T., Walker M. D., Barr P. J., Rutter W. J. 1985; Cell-specific expression of the rat insulin gene: evidence for role of two distinct 5′ flanking elements. Science 230:912–916
    [Google Scholar]
  8. Epstein M. A., Achong B. G., Barr Y. M., Zajac B., Henle G., Henle W. 1966; Morphological and virological investigation on cultured Burkitt tumor lymphoblasts (strain Raji). Journal of the National Cancer Institute 37:547–559
    [Google Scholar]
  9. Ernberg L., Falk K., Minarovits J., Busson P., Tursz T., Masucci M. G., Klein G. 1989; The role of methylation in the phenotype-dependent modulation of Epstein–Barr nuclear antigen 2 and latent membrane protein genes in cells latently infected with Epstein–Barr virus. Journal of General Virology 70:2989–3002
    [Google Scholar]
  10. Fåhraeus R., Jansson A., Ricksten A., Sjöblom A., Rymo L. 1990; Epstein–Barr virus-encoded nuclear antigen 2 activates the viral latent membrane protein promoter by modulating the activity of a negative regulatory element. Proceedings of the National Academy of Sciences, USA 87:7390–7394
    [Google Scholar]
  11. Fåhraeus R., Jansson A., Sjöblom A., Nilsson T., Klein G., Rymo L. 1993; Cell phenotype dependent control of Epstein–Barr virus latent membrane protein 1 (LMP1) gene regulatory sequences. Virology 195:71–80
    [Google Scholar]
  12. Fåhraeus R., Palmqvist L., Nerstedt A., Farzad S., Rymo L., Lain S. 1994; Response to cAMP levels of the Epstein–Barr virus EBNA2-inducible LMP1 oncogene and EBNA2 inhibition of a PP1-like activity. EMBO Journal 13:6041–6051
    [Google Scholar]
  13. Fennewald S., Van Santen V., Kieff E. 1984; Nucleotide sequence of an mRNA transcribed in latent growth-transforming virus infection indicates that it may encode a membrane protein. Journal of Virology 51:411–119
    [Google Scholar]
  14. Finke J., Fritzen R., Ternes P., Trivedi P., Bross K. J., Lange R., Mertelsmann R., Dolken G. 1992; Expression of bcl-2 in Burkitt’s lymphoma cell lines: induction by latent Epstein–Barr virus genes. Blood 80:459–469
    [Google Scholar]
  15. Ghosh D., Kieff E. 1990; Cis-acting regulatory elements near the Epstein–Barr virus latent-infection membrane protein transcriptional start site. Journal of Virology 64:1855–1858
    [Google Scholar]
  16. Goebl M. G. 1990; The PU.l transcription factor is the product of the putative oncogene Spi-1. Cell 61:1165–1166
    [Google Scholar]
  17. Grossman S. R., Johannsen E., Tong X., Yalamanchili R., Kieff E. 1994; The Epstein–Barr virus nuclear antigen 2 transactivator is directed to response elements by the Jκ recombination signal binding protein. Proceedings of the National Academy of Sciences, USA 91:7568–7572
    [Google Scholar]
  18. Hammerschmidt W., Sugden B. 1989; Genetic analysis of immortalizing functions of Epstein–Barr virus in human B lymphocytes. Nature 340:393–397
    [Google Scholar]
  19. Heller M., Dambaugh T., Kieff E. 1981; Epstein–Barr virus DNA. IX. Variation among viral DNAs from producer and nonproducer infected cells. Journal of Virology 38:632–648
    [Google Scholar]
  20. Henkel T., Ling P. D., Hayward S. D., Peterson M. G. 1994; Mediation of Epstein–Barr virus EBNA2 transactivation by recombination signal-binding protein Jκ . Science 265:92–95
    [Google Scholar]
  21. Henle G., Henle W. 1966; Immunofluorescence in cells derived from Burkitt’s lymphoma. Journal of Bacteriology 91:1248–1256
    [Google Scholar]
  22. Herbst H. D. F., Hummel M., Niedobitek S., Pileri S., Muller-Lantzsch N., Stein H. 1991; Epstein–Barr virus latent membrane protein expression in Hodgkin and Reed–Sternberg cells. Proceedings of the National Academy of Sciences, USA 88:4766–4770
    [Google Scholar]
  23. Johannsen E., Koh E., Mosialos G., Tong X., Kieff E., Grossman S. 1995; Epstein–Barr virus nuclear protein 2 transactivation of the latent membrane protein 1 promoter is mediated by Jκ and PU. 1. Journal of Virology 69:253–262
    [Google Scholar]
  24. Kaye K. M., Izumi K. M., Kieff E. 1993; Epstein–Barr virus latent protein 1 is essential for B-lymphocyte growth transformation. Proceedings of the National Academy of Sciences, USA 90:9150–9154
    [Google Scholar]
  25. King W., Tomas-Powell A., Raab-Traub N., Hawke M. C., Kieff E. 1980; Viral RNA in a restringently infected, growth-transformed cell line. Journal of Virology 36:506–518
    [Google Scholar]
  26. Klein G., Dombos L., Gothoskar B. 1972; Sensitivity of Epstein–Barr virus (EBV) producer and non-producer human lymphoblastoid cell lines to superinfection with EB-virus. International Journal of Cancer 10:44–57
    [Google Scholar]
  27. Klemsz M. J., McKercher S. R., Celada A., Van Beveren C., Maki R. A. 1990; The macrophage and B cell-specific transcription factor PU.l is related to the ets oncogene. Cell 61:113–124
    [Google Scholar]
  28. Knutson J. 1990; The level of c-fgr RNA is increased by EBNA-2, an Epstein–Barr virus gene required for B-cell immortalization. Journal of Virology 64:2530–2536
    [Google Scholar]
  29. Laux G., Dugrillon F., Eckert C., Adam B., Zimber-Strobl U., Bornkamm G. W. 1994a; Identification and characterization of an Epstein–Barr virus nuclear antigen 2-responsive cis element in the bidirectional promoter region of latent membrane protein and terminal protein 2 genes. Journal of Virology 68:6947–6958
    [Google Scholar]
  30. Laux G., Adam B., Strobl L. J., Moreau-Gachelin F. 1994b; The Spi-1/PU.l and Spi-Bets family transcription factors and the recombination signal binding protein RBP-Jκ interacts with an Epstein-Barr virus nuclear antigen 2 responsive m-element. EMBO Journal 13:5624–5632
    [Google Scholar]
  31. Liebowitz D., Kieff E. 1993; Epstein–Barr virus. In The Human Herpesviruses pp 107–172 Edited by Roizman B., Whitley R. J., Lopez C. New York: Raven Press;
    [Google Scholar]
  32. Ling P. D., Rawlins D. R., Hayward S. D. 1993; The Epstein–Barr virus immortalizing protein EBNA2 is targeted to DNA by a cellular enhancer-binding protein. Proceedings of the National Academy of Sciences, USA 90:9237–9241
    [Google Scholar]
  33. Ling P. D., Hsieh J. J.-D., Ruf I. K., Rawlins D. R., Hayward S. D. 1994; EBNA-2 upregulation of Epstein-Barr virus latency promoters and the cellular CD23 promoter utilizes a common targeting intermediate, CBF1. Journal of Virology 68:5375–5383
    [Google Scholar]
  34. Longnecker R., Miller C. L., Miao X.-Q., Marchini A., Kieff E. 1992; The only domain which distinguishes Epstein–Barr virus latent membrane protein 2A (LMP2A) from LMP2B is dispensable for lymphocyte infection and growth transformation in vitro; LMP2A is therefore nonessential. Journal of Virology 66:6461–6469
    [Google Scholar]
  35. Longnecker R., Miller C. L., Miao X.-Q., Tomkinson B., Kieff E. 1993; The last seven transmembrane and carboxy-terminal cytoplasmic domains of Epstein–Barr virus latent membrane protein 2 (LMP2) are dispensible for lymphocyte infection and growth transformation in vitro. Journal of Virology 67:2006–2013
    [Google Scholar]
  36. Mannick J. B., Cohen J. I., Birkenbach M., Marchini A., Kieff E. 1991; The Epstein–Barr virus nuclear protein encoded by the leader of the EBNA RNAs is important in B-lymphocyte transformation. Journal of Virology 65:6826–6837
    [Google Scholar]
  37. Meitinger C., Strobl L. J., Marschall G., Bornkamm G. W., Zimber-Strobl U. 1994; Crucial sequences within the Epstein–Barr virus TP1 promoter for EBNA2-mediated transactivation and interaction of EBNA2 with its responsive element. Journal of Virology 68:7497–7506
    [Google Scholar]
  38. Miller G. 1990; Epstein–Barr virus: biology, pathogenesis and medical aspects. In Virology 2nd edn, pp 1921–1958 Edited by Fields N. B., Knipe D. M. New York: Raven Press;
    [Google Scholar]
  39. Öfverstedt L. G., Hammarström K., Balgobin N., Hjertén S., Pettersson U., Chattopadhyaya J. 1984; Rapid and quantitative recovery of DNA fragments from gels by displacement electrophoresis. Biochimica et Biophysica Acta 782:120–126
    [Google Scholar]
  40. Ray D., Bosselut J., Ghysdael J., Mattei M. G., Tavitian A., Moreau-Gachelin F. 1992; Characterization of Spi-B, a transcription factor related to the putative oncoprotein Spi-1/PU.1. Molecular and Cellular Biology 12:4297–4304
    [Google Scholar]
  41. Ricksten A., Svensson C., Welinder C., Rymo L. 1987; Identification of sequences in Epstein–Barr virus DNA required for the expression of the second Epstein–Barr virus-determined nuclear antigen in COS-1 cells. Journal of General Virology 68:2407–2418
    [Google Scholar]
  42. Ricksten A., Olsson A., Andersson T., Rymo L. 1988; The 5′ flanking region of the gene for the Epstein–Barr virus-encoded nuclear antigen 2 contains a cell type specific cis-acting regulatory element that activates transcription in transfected B-cells. Nucleic Acids Research 16:8391–8410
    [Google Scholar]
  43. Sadowski H. B., Shuai K., Darnell J. E. Jr, Gilman M. Z. 1993; A common nuclear signal transduction pathway activated by growth factor and cytokine receptors. Science 261:1739–1744
    [Google Scholar]
  44. Sauder C., Haiss P., Grässer F. A., Zimber-Strobl U., Mueller-Lantzsch N. 1994; DNA-binding studies of the Epstein-Barr virus nuclear antigen 2 (EBNA-2): evidence for complex formation by latent membrane protein gene promoter-binding proteins in EBNA-2-positive cell lines. Journal of General Virology 75:3067–3079
    [Google Scholar]
  45. Sjöblom A., Jansson A., Nilsson T., Lain S., Rymo L. 1993; On the mechanism of transcriptional activation of the LMP1 promoter by EBNA2. In The Epstein–Barr Virus and Associated Diseases pp 153–158 Edited by Tursz T., Pagano J. S., Ablashi D. V., de Th G.é, Lenoir G., Pearson G. R. Paris & London: John Libbey Eurotext;
    [Google Scholar]
  46. Sjöblom A., Nerstedt A., Jansson A., Rymo L. 1995; Domains of the Epstein–Barr virus nuclear antigen 2 (EBNA2) involved in the transactivation of the latent membrane protein 1 and the EBNA Cp promoters. Journal of General Virology 76:2669–2678
    [Google Scholar]
  47. Skare J., Farley J., Strominger J. L., Fresen K. O., Cho M. S., zur Hausen H. 1985; Transformation by Epstein–Barr virus requires DNA sequences in the region of BamHI fragments Y and H. Journal of Virology 55:286–297
    [Google Scholar]
  48. Sung M. S., Kenney S., Gutsch B., Pagano J. S. 1991; EBNA-2 transactivates a lymphoid-specific enhancer in the BamHI C promoter of Epstein–Barr virus. Journal of Virology 65:2164–2169
    [Google Scholar]
  49. Swaminathan S., Tomkinson B., Kieff E. 1991; Recombinant Epstein–Barr virus with small RNA (EBER) genes deleted transforms lymphocytes and replicates in vitro . Proceedings of the National Academy of Sciences, USA 88:1546–1550
    [Google Scholar]
  50. Thompson C. C., McKnight S. L. 1992; Anatomy of an enhancer. Trends in Genetics 8:232–236
    [Google Scholar]
  51. Tomkinson B., Kieff E. 1992; Use of second-site homologous recombination to demonstrate that Epstein–Barr virus nuclear protein 3B is not important for lymphocyte infection or growth transformation in vitro. Journal of Virology 66:2893–2903
    [Google Scholar]
  52. Tomkinson B., Robertson E., Kieff E. 1993; Epstein–Barr virus nuclear proteins EBNA-3A and EBNA-3C are essential for B-lymphocyte growth transformation. Journal of Virology 67:2014–2025
    [Google Scholar]
  53. Tun T., Hamaguchi Y., Matsunami N., Furukawa T., Honjo T., Kawaichi M. 1994; Recognition sequence of a highly conserved DNA binding protein RBP-Jκ . Nucleic Acids Research 22:965–971
    [Google Scholar]
  54. Waltzer L., Logeat F., Brou C., Israel A., Sergeant A., Manet E. 1994; The human Jκ recombination signal sequence binding protein (RBP-Jκ) targets the Epstein-Barr virus EBNA2 protein to its DNA responsive elements. EMBO Journal 13:5633–5638
    [Google Scholar]
  55. Wang F., Gregory C. D., Rowe M., Rickinson A. B., Wang D., Birkenbach M., Kikutani H., Kishimoto T., Kieff E. 1987; Epstein–Barr virus nuclear antigen 2 specifically induces expression of the B-cell activation antigen CD23. Proceedings of the National Academy of Sciences, USA 84:3452–3456
    [Google Scholar]
  56. Wang F., Tsang F. S., Kurilla M. G., Cohen J. I., Kieff E. 1990a; Epstein–Barr virus nuclear antigen 2 transactivates latent membrane protein LMP1. Journal of Virology 64:3407–3416
    [Google Scholar]
  57. Wang F., Gregory C., Sample C., Rowe M., Liebowitz D., Murray R., Rickinson A., Kieff E. 1990b; Epstein–Barr virus latent membrane protein (LMP1) and nuclear proteins 2 and 3C are effectors of phenotypic changes in B lymphocytes: EBNA-2 and LMP1 cooperatively induce CD23. Journal of Virology 64:2309–2318
    [Google Scholar]
  58. Wang F., Kikutani H., Tsang S.-F., Kishimoto T., Kieff E. 1991; Epstein–Barr virus nuclear protein 2 transactivates a cis-acting CD23 DNA element. Journal of Virology 65:4101–4106
    [Google Scholar]
  59. Wegner M., Drolet D. W., Rosenfeld M. G. 1993; POU domain proteins: structure and function of developmental regulators. Current Opinion in Cell Biology 5:488–498
    [Google Scholar]
  60. Woisetschlaeger M., Yandava C. N., Furmanski L. A., Strominger J. L., Speck S. H. 1990; Promoter switching in Epstein–Barr virus during the initial stages of infection of B lymphocytes. Proceedings of the National Academy of Sciences, USA 87:1725–1729
    [Google Scholar]
  61. Woisetschlaeger M., Jin X. W., Yandava C. N., Furmanski L. A., Strominger J. L., Speck S. H. 1991; Role for the Epstein–Barr virus nuclear antigen 2 in viral promoter switching during initial stages of infection. Proceedings of the National Academy of Sciences, USA 88:3942–3946
    [Google Scholar]
  62. Yalamanchili R., Tong X., Grossman S. E. J., Mosialos G., Kieff E. 1994; Genetic and biochemical evidence that EBNA2 interaction with a 63-kDa cellular GTG-binding protein is essential for B lymphocyte growth transformation by EBV. Virology 204:634–641
    [Google Scholar]
  63. Yates J. L., Warren N., Sugden B. 1985; Stable replication of plasmids derived from Epstein–Barr virus in a variety of mammalian cells. Nature 313:812–815
    [Google Scholar]
  64. Young L. S., Alfieri C., Hennessy K., Evans H., O’Hara C., Andersson H. G., Ritz J., Shapiro S., Rickinson A., Kieff E., Cohen J. I. 1989; Expression of Epstein–Barr virus transformation-associated genes in tissues of patients with EBV lympho-proliferative disease. New England Journal of Medicine 321:1080–1085
    [Google Scholar]
  65. Zimber-Strobl U., Kremmer E., Grässer F., Marschall G., Laux G., Bornkamm G. W. 1993; The Epstein-Barr virus nuclear antigen 2 interacts with an EBNA2 responsive cfs-element of the terminal protein 1 gene promoter. EMBO Journal 12:167–175
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-76-11-2679
Loading
/content/journal/jgv/10.1099/0022-1317-76-11-2679
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error