1887

Abstract

Equine rhinoviruses (ERVs) are picornaviruses which cause a mild respiratory infection in horses. The illness resembles the common cold brought about by rhinoviruses in humans; however, the presence of a viraemia during ERV-1 infection, the occurrence of persistent infections and the physical properties are all more reminiscent of foot-and-mouth disease virus (FMDV). cDNA cloning and sequencing of the genomes of ERV-1 and ERV-2 between the poly(C) and poly(A) tracts showed that the serotypes are heterogeneous. Nevertheless, the genomic architecture of both serotypes is most similar to that of FMDV. Indeed, a comparison of the derived protein sequences of ERV-1 shows that their identity is greatest to FMDV. In contrast, most ERV-2 proteins are more related to encephalomyocarditis virus (EMCV) proteins than they are to FMDV or ERV-1. These results place ERV-1 alongside FMDV in the aphthovirus genus of the picornavirus family and indicate that this virus may serve as a model system for examining the biology of FMDV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-77-8-1719
1996-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/77/8/JV0770081719.html?itemId=/content/journal/jgv/10.1099/0022-1317-77-8-1719&mimeType=html&fmt=ahah

References

  1. Acharya R., Fry E., Stuart D., Fox G., Rowlands F., Brown F. 1989; The three-dimensional structure of foot-and-mouth disease virus at 2-9A resolution. Nature 337:709–716
    [Google Scholar]
  2. Berinstein A., Roivainen M., Hovi T., Mason P. W., Baxt B. 1995; Antibodies to the vitronectin receptor (integrin αvβ 3) inhibit binding and infection of foot-and-mouth disease virus to cultured cells. Journal of Virology 69:2664–2666
    [Google Scholar]
  3. Brown F., Cartwright B. 1963; Purification of radioactive foot-and-mouth disease virus. Nature 199:1169–1170
    [Google Scholar]
  4. Chow M., Newman J. F. E., Filman D., Hogle J. M., Rowlands D. J., Brown F. 1987; Myristylation of picomavirus capsid protein VP4 and its structural significance. Nature 327:482–486
    [Google Scholar]
  5. Clarke B., Brown A. L., Currey K. M., Newton S. E., Rowlands D. J., Carrol A. R. 1987; Potential secondary and tertiary structure in the genomic RNA of foot-and-mouth disease virus. Nucleic Acids Research 15:7067–7079
    [Google Scholar]
  6. Dear S., Staden R. 1991; A sequence assembly and editing program for efficient management of large projects. Nucleic Acids Research 19:3907–3911
    [Google Scholar]
  7. Devaney M. A., Vakharia V. N., Lloyd R. E., Ehrenfeld E., Grubman M. J. 1988; Leader protein of foot-and-mouth disease virus is required for cleavage of the p220 component of the cap-binding protein complex. Journal of Virology 62:4407–4409
    [Google Scholar]
  8. Duechler M., Skern T., Sommergruber W., Neubauer CH., Gruendler P., Fogy I., Blaas D., Kuechler E. 1987; Evolutionary relationships within the human rhino virus genus; comparison of serotypes 89, 2 and 14. Proceedings of the National Academy of Sciences, USA 84:2605–2609
    [Google Scholar]
  9. Duke G. M., Osorio T. E., Palmenberg A. C. 1990; Attenuation of mengovirus through genetic engineering of the 5' non-coding poly(C) tract. Nature 343:474–476
    [Google Scholar]
  10. Fichot O., Girard M. 1990; An improved method for sequencing of RNA templates. Nucleic Acids Research 18:6162
    [Google Scholar]
  11. Fox G., Parry N. R., Barnett P. V., McGinn B., Rowlands D. J., Brown F. 1989; The cell attachment site on foot-and-mouth disease virus includes the amino acid sequence RGD (arginine-glycine-aspartic acid). Journal of General Virology 70:625–637
    [Google Scholar]
  12. Gorbalenya A. E., Koonin E. V., Lai M. M. -C. 1991; Putative papain-related thiol proteases of positive-strand RNA viruses. FEBS Letters 288:201–205
    [Google Scholar]
  13. Hyypiä T., Horsnell CH., Maaronen M., Khan M., Kalkkinen N., Auvinen P., Kinnunen L., Stanway G. 1992; A distinct picomavirus group identified by sequence analysis. Proceedings of the National Academy of Sciences, USA 89:8847–8851
    [Google Scholar]
  14. Jackson R. J., Howell M. T., Kaminiski A. 1990; The novel mechanism of initiation of picomavirus RNA translation. Trends in Biochemical Sciences 15:477–483
    [Google Scholar]
  15. Kirchweger R., Ziegler E., Lamphear B. J., Waters D., Liebig H. D., Sommergruber W., Sobrino F., Hohenadl C., Blaas D., Rhoads R. E., Skern T. 1994; Foot-and-mouth disease vims leader proteinase: Purification of the Lb form and determination of its cleavage site on elF-4 gamma. Journal of Virology 68:5677–5684
    [Google Scholar]
  16. Mason P. W., Rieder E., Baxt B. 1995; RGD sequence of foot- and -mouth disease vims is essential for infecting cells via the natural receptor but can be bypassed by an antibody-dependent pathway. Proceedings of the National Academy of Sciences, USA 91:1932–1936
    [Google Scholar]
  17. Minor P. D., Brown F., Domingo E., Hoey E., Knowles N., Lemon S., Palmenberg A., Rueckert R. R., Stanway G., Wimmer E., Yin-Murphy E. 1995 In Virus Taxonomy. Sixth Report of the International Committee on Taxonomy of Viruses pp 329–336 Edited by Murphy F. A., Fauquet C. M., Bishop D. H. L., Ghabrial S. A., Jarvis A. W., Martelli G. P., Mayo M. A., Summers M. D. Vienna & New York: Springer-Verlag;
    [Google Scholar]
  18. Newman J. F. E., Rowlands D. J., Brown F. 1973; A physicochemical sub-grouping of the mammalian picomavimses. Journal of General Virology 18:171–180
    [Google Scholar]
  19. Newman J. F. E., Rowlands D. J., Brown F., Goodridge D., Burrows R., Steck F. 1977; Physicochemical characterization of two serologically unrelated equine rhinovimses. Intervirology 8:145–154
    [Google Scholar]
  20. Piccione M. E., Zellner M., Kumosinski T. F., Mason P. W., Grubman M. 1995; Identification of the active-site residues of foot- and-mouth disease vims leader proteinase. Journal of Virology 69:4950–4956
    [Google Scholar]
  21. Plummer G. 1962; An equine respiratory virus with enterovirus properties. Nature 195:519–520
    [Google Scholar]
  22. Roberts P. J., Belsham G. J. 1995; Identification of critical amino acids within the foot-and-mouth disease vims leader protein, a cysteine protease. Virology 213:140–146
    [Google Scholar]
  23. Rossmann M. G., Arnold E., Erickson J. W., Frankenberger E. A., Griffith J. P., Hecht H. J., Johnson J. E., Kamer G., Luo M., Mosser A. G., Rueckert R. R., Sherry B., Vriend G. 1985; Stmcture of a common cold vims and functional relationship to other picomavimses. Nature 317:145–153
    [Google Scholar]
  24. Rowlands D. J., Clarke B. E., Carroll A. R., Brown F., Nicholson B. H., Bittle J. L., Houghten R. A., Lerner R. 1983; Chemical basis of antigenic variation of foot-and-mouth disease virus. Nature 306:694–697
    [Google Scholar]
  25. Rowlands D. J., Harris T. J., Brown F. 1978; More precise location of the polycytidylic acid tract in foot-and-mouth disease vims RNA. Journal of Virology 26:335–343
    [Google Scholar]
  26. Rueckert R. R. 1990; Picornaviridae and their replication. In Fields Virology 2nd edn, pp 507–548 Edited by Fields B. N., Knipe D. M. New York: Raven Press;
    [Google Scholar]
  27. Rueckert R., Wimmer E. 1984; Systematic nomenclature of picornavims proteins. Journal of Virology 50:957–959
    [Google Scholar]
  28. Ryan M. D., King A. M. Q., Thomas C. P. 1991; Cleavage of foot- and-mouth disease vims polyprotein is mediated by residues located within a 19 amino acid sequence. Journal of General Virology 72:2727–2732
    [Google Scholar]
  29. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Sangar D. V., Newton S. E., Rowlands D. J., Clarke B. E. 1987; All foot-and-mouth disease vims serotypes initiate protein synthesis at two separate AUGs. Nucleic Acids Research 15:3305–3315
    [Google Scholar]
  31. Skern T., Sommergruber W., Blaas D., Gruendler P., Frauendorfer F., Pieler C., Fogy I., Kuechler E. 1985; Human rhinovirus 2: complete nucleotide sequence and proteolytic processing signals in the capsid protein region. Nucleic Acids Research 13:2111–2126
    [Google Scholar]
  32. Skern T., Torgersen H., Auer H., Kuechler E., Blaas D. 1991; Human rhinovims mutants resistant at low pH. Virology 183:757–763
    [Google Scholar]
  33. Stanway G. 1990; Stmcture, function and evolution of picomavimses. Journal of General Virology 71:2483–2501
    [Google Scholar]
  34. Steck F., Hofer B., Schaeren B., Nicolet J., Gerber H. 1978; Equine rhinovimses: new serotypes. Proceedings of the 4th International Conference on Equine Infectious Diseases pp 312–328 Princetown: Veterinary Publication Inc;
    [Google Scholar]
  35. Strebel K., Beck E. 1986; A second protease of foot-and-mouth-disease vims. Journal of Virology 58:893–899
    [Google Scholar]
  36. Studdert M. J., Gleeson L. J. 1978; Isolation and characterisation of an equine rhinovims. Zentralblatt für Veterinaermedizin Reihe B 25:225–237
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-77-8-1719
Loading
/content/journal/jgv/10.1099/0022-1317-77-8-1719
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error