1887

Abstract

Genes encoding glycoprotein gH and gL homo- logues were localized in the genome of the gamma- herpesvirus bovine herpesvirus-4 (BHV-4). Both genes were sequenced and glutathione S-trans- ferase fusion proteins were produced and used to immunize rabbits against the translation products of the two genes. The anti-gH serum recognized a protein with an apparent molecular mass (MM) of 110 kDa both in infected cells and in virions. This protein was sensitive to endo- - -acetylglucos- aminase-H (endoH) and endoglycosidase F--gly- cosidase F (endoF-PNGaseF) digestion. A protein with the same relative mobility was immunopre- cipitated from infected cells radiolabelled with [H]glucosamine which confirmed that this product (gp110), now designated BHV-4 gH, was glycosylated. Western blotting with the anti-gL serum detected in infected cells a product with an apparent MM ranging from 31–35 kDa and diffusely migrating proteinspeciesrangingfrom45–65 kDa.Tunica- mycin, monensin, endoH or endoF-PNGaseF treatments showed that both the 31–35 kDa and the 45–65 kDa proteins were glycosylated, gp31–35 being a precursor of the 45–65 kDa glycoprotein species. In radioimmunoprecipitation assays, the anti-gL serum immunoprecipitated from infected cells two glycosylated proteins with apparent MMs of 31–35 kDa (gp31–35) and 45–55 kDa (gp45–55). However a third glycoprotein, gp110, was also immunoprecipitated together with gp31–35 and gp45–55. gp110 and gp45–55 were subsequently confirmed to be virion glycoproteins corresponding to mature forms of BHV-4 gH and gL respectively. In addition, the present study clearly demonstrated complex formation between BHV-4 gH and gL both in virions and in infected cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-78-8-2015
1997-08-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/78/8/9267002.html?itemId=/content/journal/jgv/10.1099/0022-1317-78-8-2015&mimeType=html&fmt=ahah

References

  1. Albrecht J. -C., Nicholas J., Biller D., Cameron K. R., Biesinger B., Newman C., Wittman S., Craxton M. A., Coleman H., Fleckenstein B., Honess R. W. 1992; Primary structure of the herpesvirus saimiri genome. Journal of Virology 66:5047–5058
    [Google Scholar]
  2. Bublot M., Lomonte P., Lequarre A. -S., Albrecht J. -C., Nicholas J., Fleckenstein B., Pastoret P. -P., Thiry E. 1992; Genetic relationships between bovine herpesvirus 4 and the gammaherpesviruses Epstein-Barr virus and herpesvirus saimiri. Virology 190:654–665
    [Google Scholar]
  3. Cranage M. P., Smith G. L., Bell S. E., Hart H., Brown C., Bankier A. T., Tomlinson P., Barrell B. G., Minson T. C. 1988; Identification and expression of a human cytomegalovirus glycoprotein with homology to the Epstein-Barr virus BXLF2 product, varicella-zoster virus gplll, and herpes simplex virus type 1 glycoprotein H. Journal of Virology 62:1416–1422
    [Google Scholar]
  4. Davison A. J. 1992; Channel catfish virus: a new type of herpesvirus. Virology 186:9–14
    [Google Scholar]
  5. Davison A. J., Scott J. E. 1986; The complete DNA sequence of varicella-zoster virus. Journal of General Virology 67:1759–1816
    [Google Scholar]
  6. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  7. Dubin G., Jiang H. 1995; Expression of herpes simplex virus type 1 glycoprotein L (gL) in transfected mammalian cells: evidence that gL is not independently anchored to cell membranes. Journal of Virology 69:4564–4568
    [Google Scholar]
  8. Dubuisson J., Boulanger D., Bublot M., Thiry E., Pastoret P. -P. 1989; Proteins specified by bovine herpesvirus type 4 : structural proteins of the virion and identification of two major glycoproteins by using monoclonal antibodies. Journal of General Virology 70:1743–1753
    [Google Scholar]
  9. Duus K. M., Grose C. 1996; Multiple regulatory effects of varicella- zoster virus (VZV) gL on trafficking patterns and fusogenic properties of VZV gH. Journal of Virology 70:8961–8971
    [Google Scholar]
  10. Foà-Tomasi L., Boscaro A., di Gaeta S., Campadelli-Fiume G. 1991; Monoclonal antibodies to gp100 inhibit penetration of human herpesvirus 6 and polykaryocyte formation in susceptible cells. Journal of Virology 65:4121–4129
    [Google Scholar]
  11. Forghani B., Ni L., Grose C. 1994; Neutralization epitope of the varicella-zoster virus gH:gL glycoprotein complex. Virology 199:458–462
    [Google Scholar]
  12. Gompels U., Minson A. C. 1986; The properties and sequence of glycoprotein H of herpes simplex virus type 1. Virology 153:230–247
    [Google Scholar]
  13. Gompels U., Craxton M. A., Honess R. W. 1988; Conservation of glycoprotein H (gH) in herpesviruses : nucleotide sequence of the gH gene from herpesvirus saimiri. Journal of General Virology 69:2819–2829
    [Google Scholar]
  14. Gompels U. A., Carss A. L., Saxby C., Hancock D. C., Forrester A., Minson A. C. 1991; Characterization and sequence analyses of antibody-selected antigenic variants of herpes simplex virus show a conformationally complex epitope on glycoprotein H. Journal of General Virology 65:2393–2401
    [Google Scholar]
  15. Haddad R. S., Hutt-Fletcher L. 1989; Depletion of glycoprotein gp85 from virosomes made with Epstein-Barr virus proteins abolishes their ability to fuse with virus receptor-bearing cells. Journal of Virology 63:4998–5005
    [Google Scholar]
  16. Hutchinson L., Browne H., Wargent V., Davis-Poynter N., Primorac S. , Goldsmith K. , Minson A. C., Johnson D. C. 1992; A novel herpes simplex virus glycoprotein, gL, forms a complex with glycoprotein H (gH) and affects normal folding and surface expression of gH. Journal of Virology 66:2240–2250
    [Google Scholar]
  17. Josephs S. F., Ablashi D. V., Zaki Salahuddin S., Jagodzinski L. L., Wong-Staal F., Gallo R. C. 1991; herpesvirus 6 glycoprotein H and putative large tegument protein genes. Journal of Virology 65:5597–5604
    [Google Scholar]
  18. Kaye J. F., Gompels U. A., Minson A. C. 1992; Glycoprotein H of human cytomegalovirus (HCMV) forms a stable complex with the HCMV UL115 gene product. Journal of General Virology 73:2693–2698
    [Google Scholar]
  19. Khattar S. K., van Drunen Littel-van den Hurk S., Babiuk L. A., Tikoo S. K. 1995; Identification and transcriptional analysis of a 3′- coterminal gene cluster containing UL1, UL2, UL3, and UL3.5 open reading frames of bovine herpesvirus-1. Virology 213:28–37
    [Google Scholar]
  20. Klupp B. G., Visser N., Mettenleiter T. C. 1992; Identification and characterization of pseudorabies virus glycoprotein H. Journal of Virology 66:3048–3055
    [Google Scholar]
  21. Klupp B. G., Baumeister J., Karger A., Visser N., Mettenleiter T. C. 1994; Identification and characterization of a novel structural glycoprotein in pseudorabies virus, gL. JournalofVirology 68:3868–3878
    [Google Scholar]
  22. Kornfeld R., Kornfeld S. 1985; Assembly of asparagine-linked oligosaccharides. Annual Review of Biochemistry 54:631–664
    [Google Scholar]
  23. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  24. Ledger P. W., Tanzer M. L. 1984; Monensin - a perturbant of cellular physiology. Trends In Biochemical Sciences 9:313–314
    [Google Scholar]
  25. Li Q., Turk S. M., Hutt-Fletcher L. M. 1995; The Epstein-Barr virus (EBV) BZLF2 gene product associates with the gH and gL homologs of EBV and carries an epitope critical to infection of B cells but not of epithelial cells. Journal of Virology 69:3987–3994
    [Google Scholar]
  26. Liu D. X., Gompels U. A., Nicholas J., Lelliott C. 1993; Identification and expression of the human herpesvirus 6 glycoprotein H and interaction with an accessory 40K glycoprotein. Journal of General Virology 74:1847–1857
    [Google Scholar]
  27. Lomonte P., Bublot M., Pastoret P. -P., Thiry E. 1992; Location and characterization of the bovine herpesvirus type 4 thymidine kinase gene; comparison with thymidine kinase genes of other herpesvirus. Archives of Virology 127:327–337
    [Google Scholar]
  28. Lomonte P., Bublot M., van Santen V., Keil G. M., Pastoret P. -P., Thiry E. 1995; Analysis of bovine herpesvirus 4 genomic regions located outside the conserved gammaherpesvirus gene blocks. Journal of General Virology 76:1835–1841
    [Google Scholar]
  29. Lyaku J. R. S., Nettleton P. F., Marsden H. S. 1992; A comparison of serological relationships among ruminant alphaherpesviruses by ELISA. Archives of Virology 124:333–341
    [Google Scholar]
  30. McGeoch D. J., Davison A. J. 1986; DNA sequence of the herpes simplex virus type 1 gene encoding glycoprotein gH, and identification of homologues in the genomes of varicella-zoster virus and Epstein-Barr virus. Nucleic Acids Research 14:4281–4292
    [Google Scholar]
  31. Meyer A. L., Petrovskis E. A., Duffus W. P. H., Thomsen D. R., Post L. E. 1991; Cloning and sequence of an infectious bovine rhino- tracheitis virus (BHV-1) gene homologous to glycoprotein H of herpes simplex virus. Biochimica et Biophysica Acta 1090:267–269
    [Google Scholar]
  32. Moore P. S., Gao S. -H., Dominguez G., Cesarman E., Lungu O., Knowles D. M., Garber R., Pellett P. E., McGeoch D. J., Chang Y. 1996; Primary characterization of a herpesvirus agent associated with Kaposi’s sarcoma. Journal of Virology 70:549–558
    [Google Scholar]
  33. Novotny M. J., Parish M. L., Spear P. G. 1996; Variability of herpes simplex virus 1 gL and anti-gL antibodies that inhibit cell fusion but not viral infectivity. Virology 221:1–13
    [Google Scholar]
  34. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparisons. Proceedings of the National Academy of Sciences, USA 85:2444–2448
    [Google Scholar]
  35. Peeters B., de Wind N., Broer R., Gielkens A., Moormann R. 1992; Glycoprotein H of pseudorabies virus is essential for entry and cell-to-cell spread of the virus. Journal of Virology 66:3888–3892
    [Google Scholar]
  36. Roop C., Hutchinson L., Johnson D. C. 1993; A mutant herpes simplex virus type 1 unable to express glycoprotein gL cannot enter cells, and its particles lack glycoprotein H. Journal of Virology 67:2285–2297
    [Google Scholar]
  37. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain terminating inhibitors. Proceedings of the National Academy of Sciences, USA 74:5463–5467
    [Google Scholar]
  38. Scott S. D., Smith G. D., Ross N. L. J., Binns M. M. 1993; Identification and sequence of the homologues of the herpes simplex virus type 1 glycoprotein H in Marek’s disease virus and the herpesvirus of turkeys. Journal of General Virology 74:1185–1190
    [Google Scholar]
  39. Stokes A., Alber D. G., Greensill J., Amellal B., Carvalho R., Taylor L. A., Doel T. R., Killington R. A., Halliburton I. W., Meredith D. M. 1996; The expression of the proteins of equine herpesvirus 1 which share homology with herpes simplex virus 1 glycoproteins H and L. Virus Research 40:91–107
    [Google Scholar]
  40. Tarentino A. L., Trimble R. B., Thomas H., Plummer T. H. Jr 1989; Enzymatic approaches for studying the structure, synthesis, and processing of glycoproteins. Methods in Cell Biology 32:111–139
    [Google Scholar]
  41. Telford E. A., Watson M. S., McBride K., Davison A. J. 1992; Equine herpesvirus 2 and 5 are gammaherpesviruses. Virology 195:492–499
    [Google Scholar]
  42. Telford E. A., Studdert M. J., Agius C. T., Watson M. S., Aird H. C., Davison A. J. 1993; The DNA sequence of equine herpesvirus-1. Virology 189:304–316
    [Google Scholar]
  43. Telford E. A., Watson M. S., Aird H. C., Perry J., Davison A. J. 1995; The DNA sequence of equine herpesvirus 2. Journal of Molecular Biology 249:520–528
    [Google Scholar]
  44. Thiry E., Pastoret P. -P., Dessy-Doizé C., Hanzen C., Calberg-Bacq C. M., Dagenais L., Vindevogel H., Ectors F. 1981; Réactivation d’un herpesvirus en culture de cellules testiculaires prélevées chez un taureau atteint d’orchite et d’azoospermie. Annales de Médecine Vétérinaire 125:207–214
    [Google Scholar]
  45. van Drunen Littel-van den Hurk S., Khattar S., Tikoo S. K., Babiuk L. A., Baranowski E., Plainchamp D., Thiry E. 1996; Glycoprotein H (gII/gp108) and glycoprotein L form a functional complex which plays a role in penetration, but not in attachment, of bovine herpesvirus 1. Journal of General Virology 77:1515–1520
    [Google Scholar]
  46. Wilson D. W., Davis-Poynter N., Minson A. C. 1994; Mutations in the cytoplasmic tail of herpes simplex virus glycoprotein H suppress cell fusion by a syncytial strain. Journal of Virology 68:6985–6993
    [Google Scholar]
  47. Xu J., Scalzo A. A., Lyons P. A., Shellam G. R. 1994a; Expression of the glycoprotein H of murine cytomegalovirus and identification of an N-terminal antibody-binding region. Virology 204:466–470
    [Google Scholar]
  48. Xu J., Scalzo A. A., Lyons P. A., Farrell H. E., Rawlinson W. D., Shellam G. R. 1994b; Identification, sequencing and expression of the glycoprotein L gene of murine cytomegalovirus. Journal of General Virology 75:3235–3240
    [Google Scholar]
  49. Yaswen L. R., Stephens E. B., Davenport L. C., Hutt-Fletcher L. M. 1993; Epstein-Barr virus glycoprotein gp85 associates with the BKRF2 gene product and is incompletely processed as a recombinant protein. Virology 195:387–396
    [Google Scholar]
  50. Yoshida S., Lee L. F., Yanagida N., Nazerian K. 1994; Identification and characterization of Marek’s disease virus gene homologous to glycoprotein L of herpes simplex virus. Virology 204:414–419
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-78-8-2015
Loading
/content/journal/jgv/10.1099/0022-1317-78-8-2015
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error