1887

Abstract

Picornaviruses have been divided into five genera until recently, when a sixth genus, , was defined. Human parechovirus type 1 (HPeV1; formerly echovirus 22) was the first recognized member of this genus and preliminary sequence analysis of echovirus 23 [now renamed human parechovirus type 2 (HPeV2)] suggested that it is also a parechovirus. Here we describe the complete nucleotide and predicted amino acid sequences of HPeV2, which indicate a close relationship to HPeV1 throughout the genome. Sequence covariance in the 5′ untranslated region allows a prediction of the secondary structure, which indicates that these parechoviruses have a type 2 internal ribosome entry site, most closely related to that of cardio-viruses. Overall, HPeV2 has 87·9% amino acid identity with HPeV1, most divergence being seen in regions of the capsid proteins that probably define antigenic sites. The N-terminal sequence extension to VP3, seen only in parechoviruses, is highly basic in both viruses, but has a variable sequence, suggesting that it does not have a sequence-specific role. There is an RGD motif near the C terminus of VP1, in an analogous location to that in HPeV1 which is believed to be functionally significant. The results confirm that both viruses are parechoviruses and give insights into the molecular features of this genus.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-79-11-2641
1998-11-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/79/11/9820139.html?itemId=/content/journal/jgv/10.1099/0022-1317-79-11-2641&mimeType=html&fmt=ahah

References

  1. Acharya R., Fry E., Stuart D., Fox G., Rowlands D., Brown F. 1989; The three-dimensional structure of foot-and-mouth disease virus at 2·9 Å resolution. Nature 337:709–716
    [Google Scholar]
  2. Andino R., Rieckhof G. E., Achacoso P. L., Baltimore D. 1990; A functional ribonucleoprotein complex forms around the 5′ end of poliovirus RNA. Cell 63:369–380
    [Google Scholar]
  3. Auvinen P., Hyypiä T. 1990; Echoviruses include genetically distinct serotypes. Journal of General Virology 71:2133–2139
    [Google Scholar]
  4. Chang K. H., Auvinen P., Hyypiä T., Stanway G. 1989; The nucleotide sequence of coxsackievirus A9: implications for receptor binding and enterovirus classification. Journal of General Virology 70:3269–3280
    [Google Scholar]
  5. Chang K. H., Day C., Walker J., Hyypiä T., Stanway G. 1992; The nucleotide sequences of wild-type coxsackievirus A9 strains imply that an RGD motif in VP1 is functionally significant. Journal of General Virology 73:621–626
    [Google Scholar]
  6. Chow M., Newman J. F. E., Filman D., Hogle J. M., Rowlands D. J., Brown F. 1987; Myristoylation of picornavirus capsid protein VP4 and its structural significance. Nature 327:482–486
    [Google Scholar]
  7. Duke G. M., Hoffman M. A., Palmenberg A. C. 1992; Sequence and structural elements that contribute to efficient encephalomyocarditis virus RNA translation. Journal of Virology 66:1602–1609
    [Google Scholar]
  8. Felsenstein J. 1989 PHYLIP 3.2 Manual Berkeley, CA: University of California Herbarium;
    [Google Scholar]
  9. Gama R., Horsnell P. R., Hughes P. J., North C., Bruce C. B., Stanway G. 1989; Polymerase chain reaction amplification of rhinovirus RNA in clinical samples - a novel detection method. Journal of Medical Virology 28:73–77
    [Google Scholar]
  10. Henikoff S. 1984; Unidirectional digestion with exonuclease III creates targetted breakpoints for DNA sequencing. Gene 28:351–357
    [Google Scholar]
  11. Hogle J. M., Chow M., Filman D. J. 1985; Three-dimensional structure of poliovirus at 2·9 Å resolution. Science 229:1358–1365
    [Google Scholar]
  12. Hughes P. J., Horsnell C., Hyypiä T., Stanway G. 1995; The coxsackievirus A9 RGD motif is not essential for virus viability. Journal of Virology 69:8035–8040
    [Google Scholar]
  13. Huttunen P., Santti J., Pulli T., Hyypiä T. 1996; The major echovirus group is genetically coherent and related to coxsackie B viruses. Journal of General Virology 77:715–725
    [Google Scholar]
  14. Hyypiä T., Horsnell C., Maaronen M., Khan M., Kalkkinen N., Auvinen P., Kinnunen L., Stanway G. 1992; A distinct picornavirus group identified by sequence analysis. Proceedings of the National Academy of Sciences, USA 89:8847–8851
    [Google Scholar]
  15. Hyypiä T., Hovi T., Knowles N. J., Stanway G. 1997; Classification of enteroviruses based on molecular and biological properties. Journal of General Virology 78:1–11
    [Google Scholar]
  16. Jamison R. M. 1974; An electron microscopic study of the intracellular development of echovirus 22. Archiv für die Gesamte Virusforschung 44:184–194
    [Google Scholar]
  17. Jang S. K., Wimmer E. 1990; Cap-independent translation of encephalomyocarditis virus RNA: structural elements of the internal ribosomal entry site and involvement of a cellular 57-kD RNA-binding protein. Genes & Development 4:1560–1572
    [Google Scholar]
  18. Jia X. Y., Summers D. F., Ehrenfeld E. 1993; Primary cleavage of the HAV capsid protein precursor in the middle of the proposed 2A coding region. Virology 193:515–519
    [Google Scholar]
  19. Luo M., Vriend G., Kamer G., Minor I., Arnold E., Rossmann M. G., Boege U., Scraba D. G., Duke G. M., Palmenberg A. C. 1987; The atomic structure of Mengo virus at 3·0 Å resolution. Science 235:182–191
    [Google Scholar]
  20. Mayo M. A., Pringle C. R. 1998; Virus taxonomy - 1997. Journal of General Virology 79:649–657
    [Google Scholar]
  21. Meerovitch K., Sonenberg N. 1993; Internal initiation of picornavirus RNA translation. Seminars in Virology 4:217–227
    [Google Scholar]
  22. Minor P. D., Brown F., Domingo E., Hoey E., King A., Knowles N., Lemon S., Palmenberg A., Rueckert R., Stanway G., Wimmer E., Yin-Murphy M. 1995 Picornaviridae. In Virus Taxonomy. Sixth Report of the International Committee on Taxonomy of Viruses pp. 329–336 Murphy F. A., Fauquet C. M., Bishop D. H. L., Ghabrial S. A., Jarvis A. W., Martelli G. P., Mayo M. A., Summers M. D. Edited by Vienna & New York: Springer-Verlag;
    [Google Scholar]
  23. Mirmomeni M., Hughes P. J., Stanway G. 1997; An RNA tertiary structure in the 3′ untranslated region of enteroviruses is necessary for efficient replication. Journal of Virology 71:2363–2370
    [Google Scholar]
  24. Niklasson B., Hörnfeldt B., Lundman B. 1998; Could myocarditis, insulin-dependent diabetes mellitus, and Guillain-Barré syndrome be caused by one or more infectious agents carried by rodents?. Emerging Infectious Diseases 4:187–193
    [Google Scholar]
  25. Pilipenko E. V., Blinov V. M., Chernov B. K., Dmitrieva T. M., Agol V. I. 1989; Conservation of the secondary structure elements of the 5′ untranslated region of cardio- and aphthovirus RNAs. Nucleic Acids Research 17:5701–5711
    [Google Scholar]
  26. Pilipenko E. V., Blinov V. M., Agol V. I. 1990; Gross rearrangements within the 5′-untranslated region of the picornaviral genomes. Nucleic Acids Research 18:3371–3375
    [Google Scholar]
  27. Pilipenko E. V., Maslova S. V., Sinyakov A. N., Agol V. I. 1992; Towards identification of cis-acting elements involved in the replication of enterovirus and rhinovirus RNAs : a proposal for the existence of tRNA-like terminal structures. Nucleic Acids Research 20:1739–1745
    [Google Scholar]
  28. Poyry T., Kinnunen L., Hyypiä T., Brown B., Horsnell C., Hovi T., Stanway G. 1996; Genetic and phylogenetic clustering of enteroviruses. Journal of General Virology 77:1699–1717
    [Google Scholar]
  29. Pulli T., Koskimies P., Hyypiä T. 1995; Molecular comparison of coxsackie A virus serotypes. Virology 212:30–38
    [Google Scholar]
  30. Pulli T., Koivunen E., Hyypiä T. 1997; Cell-surface interactions of echovirus 22. Journal of Biological Chemistry 272:21176–21180
    [Google Scholar]
  31. Rohll J. B., Percy N., Ley R., Evans D. M., Almond J. W., Barclay W. S. 1994; The 5′ untranslated region of picornavirus RNAs contain independent functional domains essential for RNA replication and translation. Journal of Virology 68:4384–4391
    [Google Scholar]
  32. Roivainen M., Hyypiä T., Piirainen L., Kalkkinen N., Stanway G., Hovi T. 1991; RGD-dependent entry of coxsackievirus A9 into host cells and its bypass after cleavage of VPl protein by intestinal proteases. Journal of Virology 65:4735–4740
    [Google Scholar]
  33. Roivainen M., Piirainen L., Hovi T., Virtanen I., Riikonen T., Heino J., Hyypiä T. 1994; Entry of coxsackievirus A9 into host cells: specific interactions with av^3 integrin, the vitronectin receptor. Virology 203:357–365
    [Google Scholar]
  34. Rossmann M. G., Arnold E., Erickson J. W., Frankenberger E. A., Griffith J. P., Hecht H. J., Johnson J. E., Kamer G., Luo M., Mosser A. G., Rueckert R. R., Sherry B., Vriend G. 1985; Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317:145–153
    [Google Scholar]
  35. Rueckert R. R. 1996; Picornaviridae: the viruses and their replication. In Fields Virology, 3rd edn. pp. 609–654 Fields B. N., Knipe D. M., Howley P. M. Edited by Philadelphia: Lippincott-Raven;
    [Google Scholar]
  36. Ryan M. D., Flint M. 1997; Virus-encoded proteinases of the picornavirus super-group. Journal of General Virology 78:699–723
    [Google Scholar]
  37. Shaver D. N., Barron A. L., Karzon D. T. 1961; Distinctive cytopathology ofECHO viruses types 22 and 23. Proceedingsofthe Society for Experimental Biology and Medicine 106:648–652
    [Google Scholar]
  38. Schultheiss T., Emerson S. U., Purcell R. H., Muller V. G. 1995; Polyprotein processing in echovirus 22 : a first assessment. Biochemical and Biophysical Research Communications 217:1120–1127
    [Google Scholar]
  39. Skinner M. A., Racaniello V. R., Dunn G., Cooper J., Minor P. D., Almond J. W. 1989; New model for the secondary structure of the 5′ non-coding RNA of poliovirus is supported by biochemical and genetic data that also show that RNA secondary structure is important in neurovirulence. Journal of Molecular Biology 207:379–392
    [Google Scholar]
  40. Stanway G. 1990; Structure, function and evolution of picornaviruses. Journal of General Virology 71:2483–2501
    [Google Scholar]
  41. Stanway G., Kalkkinen N., Roivainen M., Ghazi F., Khan M., Smyth M., Meurman O., Hyypiä T. 1994; Molecular and biological characteristics of echovirus 22, a representative of a new picornavirus group. Journal of Virology 68:8232–8238
    [Google Scholar]
  42. Stewart S. R., Semler B. L. 1997; RNA determinants of picornavirus cap-independent translation initiation. Seminars in Virology 8:242–255
    [Google Scholar]
  43. Tesar M., Xi-Yu J., Summers D. F., Ehrenfeld E. 1993; Analysis of a potential myristoylation site in hepatitis A virus capsid protein VP4. Virology 194:616–626
    [Google Scholar]
  44. Wigand R., Sabin A. B. 1961; Properties of ECHO types 22, 23 and 24 viruses. Archiv für die Gesamte Virusforschung 11:224–247
    [Google Scholar]
  45. Wutz G., Auer H., Nowotny N., Grosse B., Skern T., Kuechler E. 1996; Equine rhinovirus serotypes 1 and 2: relationship to each other and to aphthoviruses and cardioviruses. Journal of General Virology 77:1719–1730
    [Google Scholar]
  46. Zimmermann H., Eggers H. J., Zimmermann A., Kraus W., Nelsen-Saltz B. 1995; Complete nucleotide sequence and biological properties of an infectious clone of prototype echovirus 9. Virus Research 39:311–319
    [Google Scholar]
  47. Zimmermann H., Eggers H. J., Nelsen-Saltz B. 1996; Molecular cloning and sequence determination of the complete genome of the virulent echovirus 9 strain Barty. Virus Genes 12:149–154
    [Google Scholar]
  48. Zuker M., Stiegler P. 1981; Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Research 9:133–148
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-79-11-2641
Loading
/content/journal/jgv/10.1099/0022-1317-79-11-2641
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error