1887

Abstract

Following extensive propagation in fibroblasts, human cytomegalovirus (HCMV) loses tropism for a number of otherwise natural host cells, in particular, endothelial cells. In this study, the hypothesis was tested that loss of endothelial tropism is associated with the appearance of genomic variants. Initial quantitative focus expansion assays on endothelial monolayers demonstrated that, while the laboratory strains AD169 and Towne failed to form detectable foci, 29 out of 30 recent clinical HCMV isolates had the potential to expand in endothelial cell culture. By long-term adaptation in fibroblast cultures, nonendotheliotropic strains could be selected from clinical HCMV isolates, while long-term endothelial-adapted strains of the same isolates retained both fibroblast tropism and endothelial tropism. Such differentially adapted isolate pairs always displayed genomic differences in restriction fragment length analyses. Coinfection of endothelial cells by two nonendotheliotropic HCMV strains yielded an endotheliotropic recombinant HCMV variant combining portions of the genomes of both parental viruses. When DNA purified from various isolates was transfected into fibroblasts, progeny virus retained the specific tropism of parental virus from which the DNA was isolated. These findings demonstrate that endothelial tropism is an inherent property of most clinical HCMV isolates and is determined by the viral genome. Although the specific determinants of HCMV cell tropism are still unknown, this study provides the first evidence for a genetic contribution.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-11-2867
1999-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/11/0802867a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-11-2867&mimeType=html&fmt=ahah

References

  1. Alford C. A., Britt W. J. 1993; Cytomegalovirus. In The Human Herpesviruses pp. 227–255 Edited by Roizman B., Whitley R. J., Lopez C. New York: Raven Press;
    [Google Scholar]
  2. Almond J. W., Cann A. J., Minor P. D., Reeve P., Schild G. C., Hauptmann R., Stanway G. 1984; Nucleotide sequence from neurovirulent and attenuated strains of type 3 poliovirus. Reviews of Infectious Diseases 6:S487–493
    [Google Scholar]
  3. Brown J. M., Kaneshima H., Mocarski E. S. 1995; Dramatic interstrain differences in the replication of human cytomegalovirus in SCID-hu mice. Journal of Infectious Diseases 171:1599–1603
    [Google Scholar]
  4. Cha T. A., Tom E., Kemble G. W., Duke G. M., Mocarski E. S., Spaete R. R. 1996; Human cytomegalovirus clinical isolates carry at least 19 genes not found in laboratory strains.. Journal of Virology 70:78–83
    [Google Scholar]
  5. Christodoulou C., Colbere Garapin F., Macadam A., Taffs L. F., Marsden S., Minor P., Horaud F. 1990; Mapping of mutations associated with neurovirulence in monkeys infected with Sabin 1 poliovirus revertants selected at high temperature. . Journal of Virology 64:4922–4929
    [Google Scholar]
  6. Elek S. D., Stern H. 1974; Development of a vaccine against mental retardation caused by cytomegalovirus infection in utero. Lancet 1:1–5
    [Google Scholar]
  7. Equestre M., Genovese D., Cavalieri F., Fiore L., Santoro R., Perez Bercoff R. 1991; Identification of a consistent pattern of mutations in neurovirulent variants derived from the sabin vaccine strain of poliovirus type 2.. Journal of Virology 65:2707–2710
    [Google Scholar]
  8. Funkhouser A. W., Purcell R. H., D’Hondt E., Emerson S. U. 1994; Attenuated hepatitis A virus: genetic determinants of adaptation to growth in MRC-5 cells. Journal of Virology 68:148–157
    [Google Scholar]
  9. Georgescu M. M., Tardy Panit M., Guillot S., Crainic R., Delpeyroux F. 1995; Mapping of mutations contributing to the temperature sensitivity of the Sabin 1 vaccine strain of poliovirus.. Journal of Virology 69:5278–5286
    [Google Scholar]
  10. Graff J., Kasang C., Normann A., Pfisterer Hunt M., Feinstone S. M., Flehmig B. 1994; Mutational events in consecutive passages of hepatitis A virus strain GBM during cell culture adaptation. Virology 204:60–68
    [Google Scholar]
  11. Grefte A., van der Giessen M., van Son W., The T. H. 1993; Circulating cytomegalovirus (CMV)-infected endothelial cells in patients with an active CMV infection.. Journal of Infectious Diseases 167:270–277
    [Google Scholar]
  12. Grefte J. M., van der Giessen M., Blom N., The T. H., van Son W. J. 1995; Circulating cytomegalovirus-infected endothelial cells after renal transplantation: possible clue to pathophysiology?. Transplantation Proceedings 27:939–942
    [Google Scholar]
  13. Grundy J. E., Lawson K. M., MacCormac L. P., Fletcher J. M., Yong K. L. 1998; Cytomegalovirus- infected endothelial cells recruit neutrophils by the secretion of C-X- C chemokines and transmit virus by direct neutrophil–endothelial cell contact and during neutrophil transendothelial migration. Journal of Infectious Diseases 177:1465–1474
    [Google Scholar]
  14. Harrowe G., Cheng Mayer C. 1995; Amino acid substitutions in the V3 loop are responsible for adaptation to growth in transformed T-cell lines of a primary human immunodeficiency virus type 1. Virology 210:490–494
    [Google Scholar]
  15. Ibanez C. E., Schrier R., Ghazal P., Wiley C., Nelson J. A. 1991; Human cytomegalovirus productively infects primary differentiated macrophages. Journal of Virology 65:6581–6588
    [Google Scholar]
  16. Irmiere A., Gibson W. 1983; Isolation and characterization of a noninfectious virion-like particle released from cells infected with human strains of cytomegalovirus. Virology 130:118–133
    [Google Scholar]
  17. Lathey J. L., Spector S. A. 1991; Unrestricted replication of human cytomegalovirus in hydrocortisone-treated macrophages. Journal of Virology 65:6371–6375
    [Google Scholar]
  18. Lukashov V. V., Goudsmit J. 1995; Increasing genotypic and phenotypic selection from the original genomic RNA populations of HIV-1 strains LAI and MN (NM) by peripheral blood mononuclear cell culture, B- cell-line propagation and T-cell-line adaptation. AIDS91307–1311
    [Google Scholar]
  19. MacCormac L. P., Grundy J. E. 1999; Two clinical isolates and the Toledo strain of cytomegalovirus contain endothelial cell tropic variants that are not present in the AD169, Towne, or Davis strains. Journal of Medical Virology 57:298–307
    [Google Scholar]
  20. McGoldrick A., Macadam A. J., Dunn G., Rowe A., Burlison J., Minor P. D., Meredith J., Evans D. J., Almond J. W. 1995; Role of mutations G- 480 and C-6203 in the attenuation phenotype of Sabin type 1 poliovirus. Journal of Virology 69:7601–7605
    [Google Scholar]
  21. Mahy B. W. J., Kangro H. O. 1996 Virology Methods Manual San Diego: Academic Press;
  22. Minton E. J., Tysoe C., Sinclair J. H., Sissons J. G. 1994; Human cytomegalovirus infection of the monocyte/macrophage lineage in bone marrow.. Journal of Virology 68:4017–4021
    [Google Scholar]
  23. Ng Bautista C. L., Sedmak D. D. 1995; Cytomegalovirus infection is associated with absence of alveolar epithelial cell HLA class II antigen expression.. Journal of Infectious Diseases 171:39–44
    [Google Scholar]
  24. Niggli H. J., Bayreuther K., Rodemann H. P., Rothlisberger R., Francz P. I. 1989; Mitomycin C-induced postmitotic fibroblasts retain the capacity to repair pyrimidine photodimers formed after UV-irradiation.. Mutation Research 219:231–240
    [Google Scholar]
  25. Percivalle E., Revello M. G., Vago L., Morini F., Gerna G. 1993; Circulating endothelial giant cells permissive for human cytomegalovirus (HCMV) are detected in disseminated HCMV infections with organ involvement.. Journal of Clinical Investigation 92:663–670
    [Google Scholar]
  26. Quinnan G. V. Jr, Delery M., Rook A. H., Frederick W. R., Epstein J. S., Manischewitz J. F., Jackson L., Ramsey K. M., Mittal K., Plotkin S. A. 1984; Comparative virulence and immunogenicity of the Towne strain and a nonattenuated strain of cytomegalovirus.. Annals of Internal Medicine 101:478–483
    [Google Scholar]
  27. Roberts W. H., Sneddon J. M., Waldman J., Stephens R. E. 1989; Cytomegalovirus infection of gastrointestinal endothelium demonstrated by simultaneous nucleic acid hybridization and immunohistochemistry.. Archives of Pathology and Laboratory Medicine 113:461–464
    [Google Scholar]
  28. Schmidt J., Klupp B. G., Karger A., Mettenleiter T. C. 1997; Adaptability in herpesviruses: glycoprotein D-independent infectivity of pseudorabies virus.. Journal of Virology 71:17–24
    [Google Scholar]
  29. Schröder C., Linde G., Fehler F., Keil G. M. 1997; From essential to beneficial: glycoprotein D loses importance for replication of bovine herpesvirus 1 in cell culture.. Journal of Virology7125–33
    [Google Scholar]
  30. Sharma J. M., Coulson B. D., Young E. 1976; Effect of in vitro adaptation of Marek’s disease virus on pock induction on the chorioallantoic membrane of embryonated chicken eggs.. Infection and Immunity 13:292–295
    [Google Scholar]
  31. Sinzger C., Müntefering H., Löning T., Stöss H., Plachter B., Jahn G. 1993; Cell types infected in human cytomegalovirus placentitis identified by immunohistochemical double staining.. Virchows Archiv A Pathological Anatomy and Histopathology 423:249–256
    [Google Scholar]
  32. Sinzger C., Grefte A., Plachter B., Gouw A. S. H., The T. H., Jahn G. 1995; Fibroblasts, epithelial cells, endothelial cells and smooth muscle cells are major targets of human cytomegalovirus infection in lung and gastrointestinal tissues. Journal of General Virology 76:741–750
    [Google Scholar]
  33. Sinzger C., Plachter B., Grefte A., The T. H., Jahn G. 1996; Tissue macrophages are infected by human cytomegalovirus in vivo.. Journal of Infectious Diseases 173:240–245
    [Google Scholar]
  34. Sinzger C., Knapp J., Plachter B., Schmidt K., Jahn G. 1997; Quantification of replication of clinical cytomegalovirus isolates in cultured endothelial cells and fibroblasts by a focus expansion assay.. Journal of Virological Methods 63:103–112
    [Google Scholar]
  35. Stokes A., Tierney E. L., Sarris C. M., Murphy B. R., Hall S. L. 1993; The complete nucleotide sequence of two cold-adapted, temperature-sensitive attenuated mutant vaccine viruses (cp12 and cp45) derived from the JS strain of human parainfluenza virus type 3 (PIV3). . Virus Research 30:43–52
    [Google Scholar]
  36. Waldman W. J., Sneddon J. M., Stephens R. E., Roberts W. H. 1989; Enhanced endothelial cytopathogenicity induced by a cytomegalovirus strain propagated in endothelial cells.. Journal of Medical Virology 28:223–230
    [Google Scholar]
  37. Waldman W. J., Roberts W. H., Davis D. H., Williams M. V., Sedmak D. D., Stephens R. E. 1991; Preservation of natural endothelial cytopathogenicity of cytomegalovirus by propagation in endothelial cells. Archives of Virology 117:143–164
    [Google Scholar]
  38. Waldman W. J., Knight D. A., Huang E. H., Sedmak D. D. 1995; Bidirectional transmission of infectious cytomegalovirus between monocytes and vascular endothelial cells: an in vitro model. .Journal of Infectious Diseases 171:263–272
    [Google Scholar]
  39. Weber B., Klinghardt U., Lux A., Braun W., Rabenau H., Doerr H. W. 1993; Detection of neutralizing antibodies against human cytomegalovirus: influence of strain variation.. Journal of Medical Virology 40:28–34
    [Google Scholar]
  40. Wiley C. A., Nelson J. A. 1988; Role of human immunodeficiency virus and cytomegalovirus in AIDS encephalitis. American Journal of Pathology 133:73–81
    [Google Scholar]
  41. Willcocks M. M., Ashton N., Kurtz J. B., Cubitt W. D., Carter M. J. 1994; Cell culture adaptation of astrovirus involves a deletion.. Journal of Virology 68:6057–6058
    [Google Scholar]
  42. Woodroffe S. B., Hamilton J., Garnett H. M. 1997; Comparison of the infectivity of the laboratory strain AD169 and a clinical isolate of human cytomegalovirus to human smooth muscle cells.. Journal of Virological Methods 63:181–191
    [Google Scholar]
  43. Zaia J. A., Gallez Hawkins G., Churchill M. A., Morton Blackshere A., Pande H., Adler S. P., Schmidt G. M., Forman S. J. 1990; Comparative analysis of human cytomegalovirus a-sequence in multiple clinical isolates by using polymerase chain reaction and restriction fragment length polymorphism assays. Journal of Clinical Microbiology 28:2602–2607
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-11-2867
Loading
/content/journal/jgv/10.1099/0022-1317-80-11-2867
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error