1887

Abstract

The nucleotide sequences of the L gene and 5′ trailer region of Ebola virus strain Mayinga (subtype Zaire) have been determined, thus completing the sequence of the Ebola virus genome. The putative transcription start signal of the L gene was identical to the determined 5′ terminus of the L mRNA (5′ GAGGAAGAUUAA) and showed a high degree of similarity to the corresponding regions of other Ebola virus genes. The 3′ end of the L mRNA terminated with 5′ AUUAUAAAAAA, a sequence which is distinct from the proposed transcription termination signals of other genes. The 5′ trailer sequence of the Ebola virus genomic RNA consisted of 676 nt and revealed a self-complementary sequence at the extreme end which may play an important role in virus replication. The L gene contained a single ORF encoding a polypeptide of 2212 aa. The deduced amino acid sequence showed identities of about 73 and 44% to the L proteins of Ebola virus strain Maleo (subtype Sudan) and Marburg virus, respectively. Sequence comparison studies of the Ebola virus L proteins with several corresponding proteins of other non-segmented, negative-strand RNA viruses, including Marburg viruses, confirmed a close relationship between filoviruses and members of the Paramyxovirinae. The presence of several conserved linear domains commonly found within L proteins of other members of the order Mononegavirales identified this protein as the RNA-dependent RNA polymerase of Ebola virus.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-2-355
1999-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/2/0800355a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-2-355&mimeType=html&fmt=ahah

References

  1. Blumberg B. M., Crowly J. C., Silverman J. I., Menonna J., Cook S. D., Dowling P. C. 1988; Measles virus L protein evidences elements of ancestral RNA polymerases. Virology 164:487–497
    [Google Scholar]
  2. Bukreyev A. A., Volchkov V. E., Blinov V. M., Dryga S. A., Netesov S.V. 1995; The nucleotide sequence of the Popp (1967) strain of Marburg virus: a comparison with the Musoke (1980) strain. Archives of Virology 140:1589–1600
    [Google Scholar]
  3. Chepurnov A. A., Chernukhin I. V., Ternovoj V. A., Kudoyarova N. M., Makhova N. M., Azayev M. S., Smolina M. P. 1995; Attempts of creating a vaccine against Ebola fever. Voprosy Virusologii 40:257–260
    [Google Scholar]
  4. Colonno R. J., Banerjee A. K. 1977; Mapping and initiation studies on the leader RNA of vesicular stomatitis virus. Virology 77:260–268
    [Google Scholar]
  5. Dayhoff M. O., Hunt L. T., Hurst-Calderone S. 1978; Compositions of proteins. In Atlas of Protein Sequence and Structure vol 5 Suppl 3 pp 363–373 Edited by Dayhoff M. O. Washington, DC: National Biomedical Research Foundation;
    [Google Scholar]
  6. Elliott L. H., Kiley M. P., McCormick J. B. 1985; Descriptive analysis of Ebola virus proteins. Virology 147:169–176
    [Google Scholar]
  7. Feldmann H., Klenk H. D. 1996; Filoviruses: Marburg and Ebola. Advances in Virus Research 47:1–52
    [Google Scholar]
  8. Feldmann H., Muhlberger E., Randolf A., Will C., Kiley M. P., Sanchez A., Klenk H.-D. 1992; Marburg virus, a filovirus: messenger RNAs, gene order, and regulatory elements of the replication cycle. Virus Research 24:1–19
    [Google Scholar]
  9. Feldmann H., Klenk H.-D., Sanchez A. 1993; Molecular biology and evolution of filoviruses. Archives of Virology Supplementum 7:81–100
    [Google Scholar]
  10. Feldmann H., Volchkov V. E., Klenk H. D. 1997; Filovirus Ebola et Marburg. Annales de lInstitut Pasteur 8:285–296
    [Google Scholar]
  11. Galinski M. S., Mink M. A., Pons M. W. 1988; Molecular cloning and sequence analysis of the human parainfluenza 3 virus gene coding for the L protein. Virology 165:499–510
    [Google Scholar]
  12. Georges-Courbot M. C., Sanchez A., Lu C. Y., Baize S., Leroy E., Lansout-Soukate J., Tevi-Benissan C., Georges A. J., Trappier S. G., Zaki S. R., Swanepoel R., Leman P. A., Rollin P. E., Peters C. J., Nichol S. T., Ksiazek T. G. 1997; Isolation and phylogenetic characterization of Ebola viruses causing different outbreaks in Gabon. Emerging Infectious Diseases 3:59–62
    [Google Scholar]
  13. Huggins J., Tseng C., Laughlin C., Bray M. 1996; Antiviral drug therapy of filovirus infection. International Colloquium on Ebola Virus Research Antwerp, Belgium:
    [Google Scholar]
  14. Ishihama A., Barbier P. 1994; Molecular anatomy of viral RNA-directed RNA polymerases. Archives of Virology 134:235–258
    [Google Scholar]
  15. Kiley M. P., Cox N. J., Elliott L. H., Sanchez A., DeFries R., Buchmeier M. J., Richman D. D., McCormick J. B. 1988; Physicochemical properties of Marburg virus: evidence for three distinct virus strains and their relationship to Ebola virus. Journal of General Virology 69:1957–1967
    [Google Scholar]
  16. Lazinski D., Grzadzielska E., Das A. 1989; Sequence specific recognition of RNA hairpins by bacteriophage antiterminators requires a conserved arginine-rich motif. Cell 59:207–218
    [Google Scholar]
  17. Leppert M., Rittenhouse L., Perrault J., Summers D. F., Kolakofsky D. 1979; Plus and minus strand leader RNAs in negative strand virus-infected cells. Cell 18:235–245
    [Google Scholar]
  18. Maxam A., Gilbert W. 1980; Sequencing end-labeled DNA with base-specific chemical cleavages. Methods in Enzymology 65:499–560
    [Google Scholar]
  19. Muhlberger E., Sanchez A., Randolf A., Will C., Kiley M. P., Klenk H.-D., Feldmann H. 1992; The nucleotide sequence of the L gene of Marburg virus, a filovirus: homologies with paramyxoviruses and rhabdoviruses. Virology 187:534–547
    [Google Scholar]
  20. Muhlberger E., Trommer S., Funke C., Volchkov V., Klenk H.-D., Becker S. 1996; Termini of all mRNA species of Marburg virus: sequence and secondary structure. Virology 223:376–380
    [Google Scholar]
  21. Murphy F. A., Fauquet C. M., Bishop D. H. L., Ghabrial S. A., Jarvis A. W., Martelli G. P., Mayo M. A., Summers M. D. (editors) 1995 Virus Taxonomy. Sixth Report ofthe International Committee on Taxonomy of Viruses Vienna & New York: Springer-Verlag;
    [Google Scholar]
  22. Peters C. J., Sanchez A., Rollin P. E., Ksiazek T. G., Murphy F. A. 1996; Filoviridae: Marburg and Ebola viruses. In Fields Virology 3rd edn pp 1161–1176 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia: Lippincott-Raven;
    [Google Scholar]
  23. Poch O., Blumberg B. M., Bougueleret L., Tordo N. 1990; Sequence comparison of five polymerases (L proteins) of unsegmented negative-strand RNA viruses: theoretical assignment of functional domains. Journal of General Virology 74:1153–1162
    [Google Scholar]
  24. Resenchuk S. M., Blinov V. M. 1995; Alignment service: creation and processing of alignments of sequences of unlimited lengths. Computer Applications in the Biosciences 11:7–11
    [Google Scholar]
  25. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual 2nd edn Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Sanchez A., Kiley M. P., Holloway B. P., McCormick J. B., Auperin D.D. 1989; The nucleoprotein gene of the Ebola virus: cloning, sequencing and in vitro expression. Virology 170:81–91
    [Google Scholar]
  27. Sanchez A., Kiley M. P., Holloway B. P., Auperin D. D. 1993; Sequence analysis of the Ebola virus genome: organization, genetic elements, and comparison with the genome of Marburg virus. Virus Research 29:215–240
    [Google Scholar]
  28. Sanchez A., Trappier S. G., Mahy B. W. J., Peters C. J., Nichol S. T. 1996; The virion glycoprotein of Ebola viruses are encoded in two reading frames and are expressed through transcriptional editing. Proceedings of the National Academy of Sciences, USA 93:3602–3607
    [Google Scholar]
  29. Sanchez A., Yang Z. Y., Xu L., Nabel G. J., Crews T., Peters C. J. 1998; Biochemical analysis of the secreted and virion glycoproteins of Ebola virus. Journal of Virology 72:6442–6447
    [Google Scholar]
  30. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-termination inhibitors. Proceedings of the National Academy of Sciences, USA 74:5463–5467
    [Google Scholar]
  31. Shioda T., Iwasaki K., Shibuta H. 1986; Determination of the complete nucleotide sequence of the Sendai virus genome RNA and the predicted amino acid sequences of the F, HN, and L proteins. Nucleic Acids Research 14:1545–1563
    [Google Scholar]
  32. Tordo N., Poch O., Ermine A., Keith G., Rougeon F. 1988; Completion of the Rabies virus genome sequence determination: highly conserved domains among the L (polymerase) proteins of unsegmented negative-strand RNA viruses. Virology 165:565–576
    [Google Scholar]
  33. Volchkov V. E., Blinov V. M., Netesov S. V. 1992; The envelope glycoprotein of Ebola virus contains an immunosuppressive-like domain similar to oncogenic retroviruses. FEBS Letters 305:181–184
    [Google Scholar]
  34. Volchkov V. E., Becker S., Volchkova V. A., Ternovoj V. A., Kotov A. N., Netesov S. V., Klenk H. D. 1995; GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases. Virology 214:421–430
    [Google Scholar]
  35. Volchkov V., Volchkova V., Eckel C., Klenk H.-D., Bouloy M., LeGuenno B., Feldmann H. 1997; Emergence of subtype Zaire Ebola virus in Gabon. Virology 232:139–144
    [Google Scholar]
  36. Volchkov V. E., Feldmann H., Volchkova V. A., Klenk H.-D. 1998a; Processing of the Ebola virus glycoprotein by the proprotein convertase furin. Proceedings of the National Academy of Sciences, USA 95:5762–5767
    [Google Scholar]
  37. Volchkov V. E., Volchkova V. A., Slenczka W., Klenk H.-D., Feldmann H. 1998b; Release of viral glycoproteins during Ebola virus infection. Virology 245:110–119
    [Google Scholar]
  38. Volchkova V. A., Feldmann H., Klenk H.-D., Volchkov V. E. 1998; The nonstructural small glycoprotein sGP of Ebola virus is secreted as an anti-parallel orientated homodimer. Virology 250:408–414
    [Google Scholar]
  39. Yusoff K., Millar N. S., Chambers P., Emmerson P. T. 1987a; Nucleotide sequence analysis of the L gene of Newcastle disease virus. Homologies with Sendai and vesicular stomatitis viruses. Nucleic Acids Research 15:3961–3976
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-2-355
Loading
/content/journal/jgv/10.1099/0022-1317-80-2-355
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error