1887

Abstract

In order to determine geographically related intratypic variation in human papillomavirus (HPV) type 16 and 18 isolates that could be associated with lesion development, data were analysed from an ongoing cohort study of the natural course of infection of HPVs and cervical neoplasia. Testing for HPVs was carried out by PCR and molecular variants of these HPVs were characterized by sequence analysis of the long control region and by dot blot hybridization of the E6 and L1 genes. Tests for HPV were done in multiple first-year specimens from 1690 women enrolled in a cancer screening program from 1993 to 1997. Subjects were followed-up by cytology and cervicography for detection of cervical lesions. Seven variants of HPV-16 and four of HPV-18 were detected in one or more specimens from 65 subjects. The same variant was found in specimens taken on different visits from each case of persistent infection. Overall, non-European variants tended to persist more frequently [odds ratio (OR)=4·5; 95% confidence interval (CI), 1·6–12·4] than European (E) variants (OR=2·5; 95% CI, 1·3–4·9), relative to the risk of persistence for non-oncogenic HPVs. In addition, non-E variants were more strongly associated with risk of both prevalent (age- and race-adjusted OR=172·2; 95% CI, 47·1–630·1) and incident [relative risk (RR)=22·5; 95% CI, 6·0–83·9] high-grade lesions than E variants (prevalent lesions OR=46·3; 95% CI, 15·5–138·0 and incident lesons RR=6·1; 95% CI, 1·3–27·4), relative to the risk for HPV-negative women. Although consistent, the latter differences were not statistically significant. If confirmed in other populations, measurement of intratypic variation of HPV-16 and -18 has the potential to serve as an ancillary tool in cervical cancer screening.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-12-2959
2000-12-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/12/0812959a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-12-2959&mimeType=html&fmt=ahah

References

  1. Bauer H. M., Ting Y., Greer C. E., Chambers J. C., Tashiro C. J., Chimera J., Reingold A., Manos M. M. 1991; Genital human papillomavirus infection in students as determined by a PCR-based method. Journal of the American Medical Association 265:472–477
    [Google Scholar]
  2. Bernard H. U., Chan S.-Y., Delius H. 1994a; Evolution of papillomaviruses. Current Topics in Microbiology and Immunology 186:33–53
    [Google Scholar]
  3. Bernard H. U., Chan S.-Y., Manos M. M., Ong C. K., Villa L. L., Delius H., Peyton C. L., Bauer H. M., Wheeler C. M. 1994b; Identification and assessment of known and novel human papillomaviruses by polymerase chain reaction amplification, restriction fragment length polymorphisms, nucleotide sequence, and phylogenetic algorithms. Journal of Infectious Diseases 170:1077–1085
    [Google Scholar]
  4. Bontkes H. T., van Duin M., de Gruij L. T. D., Duggan-Keen M. F., Walboomers J. M. M., Stukart M. J., Verheijen R. H. M., Helmerhorst T. J. M., Meijer C. J. L. M., Scheper R. J., Stevens F. R. A., Dyer P. A., Sinnott P., Stern P. L. 1998; HPV-16 infection and progression of cervical intra-epithelial neoplasia: analysis of HLA polymorphism and HPV-16 sequence variants. International Journal of Cancer 78:166–171
    [Google Scholar]
  5. Caballero O. L., Villa L. L., Simpson A. J. G. 1995; Low stringency-PCR (LS-PCR) allows entirely internally standardized DNA quantitation. Nucleic Acids Research 23:193–203
    [Google Scholar]
  6. Chan S.-Y., Ho L., Ong C. K., Chow V., Drescher B., Dürst M., ter Meuler J., Villa L. L., Luande J., Mgaya H. N., Bernard H. U. 1992; Molecular variants of human papillomavirus-16 from four continents suggest ancient pandemic spread of the virus and its co-evolution with humankind. Journal of Virology 66:2057–2066
    [Google Scholar]
  7. Conrad-Stöppler M. C., Ching K., Stöppler H., Clancy K., Schlegel R., Icenogle J. 1996; Natural variants of human papillomavirus type 16 E6 protein differ in their abilities to alter keratinocyte differentiation and to induce p53 degradation. Journal of Virology 70:6987–6993
    [Google Scholar]
  8. Ellis J. R. M., Keating P. J., Baird J., Hounsell E. F., Renouf D. V., Rowe M., Hopkins D., Duggan-Keen M. F., Bartholomew J. S., Young L. S., Stern P. L. 1995; The association of an HPV-16 oncogene variant with HLA-B7 has implications for vaccine design in cervical cancer. Nature Medicine 1:464–470
    [Google Scholar]
  9. Eriksson A., Herron J. R., Yamada T., Wheeler C. M. 1999; Human papillomavirus type 16 variant lineages characterized by nucleotide sequence analysis of the E5 coding segment and the E2 hinge region. Journal of General Virology 80:595–600
    [Google Scholar]
  10. Eschle D., Dürst M., ter Meulen J., Luande J., Eberhardt H. C., Pawlita M., Gissman L. 1992; Geographical dependence of sequence variation in the E7 gene of human papillomavirus type 16. Journal of General Virology 73:1829–1832
    [Google Scholar]
  11. Franco E., Villa L. L., Rahal P., Ruiz A. 1994; Molecular variant analysis as an epidemiological tool to study persistence of cervical human papillomavirus infection. Journal of the National Cancer Institute 86:1558–1559
    [Google Scholar]
  12. Franco E., Villa L., Rohan T., Ferenczy A., Petzl-Erler M., Matlashewski G. 1999a; Design and methods of the Ludwig–McGill longitudinal study of the natural history of human papillomavirus infection and cervical neoplasia in Brazil. Ludwig–McGill Study Group. Revista Panamericana De Salud Publica 6:223–233
    [Google Scholar]
  13. Franco E. L., Villa L. L., Sobrinho J., Prado J. M., Rousseau M. C., Désy M., Rohan T. E. 1999b; Epidemiology of acquisition and clearance of cervical human papillomavirus infection in women from a high-risk area for cervical cancer. Journal of Infectious Diseases 180:1415–1423
    [Google Scholar]
  14. Hecht J. L., Kadish A. S., Jiang G., Burk R. D. 1995; Genetic characterization of the human papillomavirus (HPV)-18 E2 gene in clinical specimens suggests the presence of a subtype with decreased oncogenic potential. International Journal of Cancer 60:369–376
    [Google Scholar]
  15. Heinzel P. A., Chan S.-Y., Ho L., O’Connor M., Balaram P., Campo M. S., Fujinaga K., Kiviat N., Kuypers J., Pfister H., Steinberg B. M., Tay S.-K., Villa L. L., Bernard H. U. 1995; Variation of human papillomavirus type 6 (HPV-6) and HPV-11 genome samples throughout the world. Journal of Clinical Microbiology 33:1746–1754
    [Google Scholar]
  16. Hildesheim A., Schiffman M. H., Gravitt P. E., Glass A. G., Greer C. E., Zhang T., Scott D. R., Rush B. B., Lawler P., Sherman M. E. 1994; Persistence of type-specific human papillomavirus infection among cytologically normal women. Journal of Infectious Disease 169:235–240
    [Google Scholar]
  17. Ho G. Y., Tay S., Chan S.-Y., Bernard H. U. 1993; Sequence variants of human papillomavirus type 16 from couples suggest sexual transmission with low infectivity and polyclonality in genital neoplasia. Journal of Infectious Diseases 168:803–809
    [Google Scholar]
  18. Ho L., Chan S.-Y., Chow V., Chong T., Tay S., Villa L. L., Bernard H. U. 1991; Sequence variants of human papillomavirus type 16 in clinical samples permit verification and extension of epidemiological studies and construction of a phylogenetic tree. Journal of Clinical Microbiology 29:1765–1772
    [Google Scholar]
  19. Ho L., Chan S.-Y., Burk R. D., Das B. C., Fujinaga K., Icenogle J. P., Kahn T., Kiviat N., Lancaster W., Mavromara-Nazos P., Labropoulou V., Mitrani-Rosenbaum S., Norrild B., Pillai M. R., Stoerker J., Syrjaenen K., Syrjaenen S., Tay S., Villa L. L., Wheeler C. M., Williamson A. L., Bernard H. U. 1993; The genetic drift of human papillomavirus type 16 is a means of reconstructing prehistoric viral spread and the movement of ancient human populations. Journal of Virology 67:6413–6423
    [Google Scholar]
  20. Icenogle J. P., Sathy P., Miller D. L., Tucker R. A., Rawls W. E. 1991; Nucleotide and amino acid sequence variation in the L1 and E7 open reading frames of human papillomavirus type 6 and type 16. Virology 184101–107
    [Google Scholar]
  21. Junes K. S., Sichero L., Mello W., Noronha V., Villa L. L. 2000; Intratypic variability of HPV-16 and -18 in tumour biopsies from a high risk area for cervical cancer. 18th International Papillomavirus Conference (Barcelona) Spain, 23–28 July, 2000
    [Google Scholar]
  22. Kämmer C., Warthorst U., Torrez-Martinez N., Wheeler C. M., Pfister H. 2000; Sequence analysis of the long control region of human papillomavirus type 16 variants and functional consequences for P97 promoter activity. Journal of General Virology 81:1975–1981
    [Google Scholar]
  23. Kirnbauer R., Booy F., Cheng N., Lowy D. R., Schiller J. T. 1992; Papillomavirus L1 major protein self-assembles into virus-like particles that are highly immunogenic. Proceedings of the National Academy of Sciences, USA 89:12180–12184
    [Google Scholar]
  24. Kirnbauer R., Tabú J., Greenstone H., Roden R., Dürst M., Gissman L., Lowy D. R., Schiller J. T. 1993; Efficient self-assembly of human papillomavirus type 16 L1 and L1–L2 into virus-like particles. Journal of Virology 67:6929–6936
    [Google Scholar]
  25. Kirnbauer R., Hubbert N. L., Wheeler C. M., Becker T. M., Lowy D. R., Schiller J. T. 1994; A virus-like particle enzyme-linked immunosorbent assay detects serum antibodies in a majority of women infected with human papillomavirus type 16. Journal of the National Cancer Institute 86:494–499
    [Google Scholar]
  26. Liaw K. L., Glass A. G., Manos M. M., Greer C. E., Scott D. R., Sherman M., Burk R. D., Kurman R. J., Wacholder S., Rush B. B., Cadell D. M., Lawler P., Tabor D., Schiffman M. 1999; Detection of human papillomavirus DNA in cytologically normal women and subsequent cervical squamous intraepithelial lesions. Journal of the National Cancer Institute 91:954–960
    [Google Scholar]
  27. Londesborough P., Ho L., Terry G., Cuzick J., Wheeler C., Singer A. 1996; Human papillomavirus genotype as a predictor of persistence and development of high-grade lesions in women with minor cervical abnormalities. International Journal of Cancer 69:364–368
    [Google Scholar]
  28. Maciag P., Villa L. L. 1999; Genetic susceptibility to HPV infection and cervical cancer. Brazilian Journal of Medical and Biological Research 32:915–922
    [Google Scholar]
  29. Nindl I., Rindfleisch K., Teller K., Schneider A., Dürst M. 1999; Cervical cancer, HPV-16 E6 variant genotypes, and serology. Lancet 353:152
    [Google Scholar]
  30. Ong C. K., Chan S.-Y., Campo M. S., Fujinaga K., Mavromara-Nazos P., Labropoulou V., Pfister H., Tay S.-K., ter Meulen J., Villa L. L., Bernard H. U. 1993; Evolution of human papillomavirus type 18: an ancient phylogenetic root in Africa and intratype diversity reflect co-evolution with human ethnic groups. Journal of Virology 67:6424–6431
    [Google Scholar]
  31. Rose R. C., Reichmann R. C., Bonnez W. 1994; Human papillomavirus (HPV) type 11 recombinant virus-like particles induce the formation of neutralizing antibodies and detect HPV-specific antibodies in human sera. Journal of General Virology 75:2075–2079
    [Google Scholar]
  32. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. S., Higuchi H., Horn G. T., Mullis K. B., Erlich H. A. 1988; Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–497
    [Google Scholar]
  33. Song Y. S., Kee S. H., Kim J. W., Park N. H., Kang S. B., Chang W. H., Lee H. P. 1997; Major sequence variants in E7 gene of human papillomavirus type 16 from cervical cancerous and non-cancerous lesions of Korean women. Gynaecologic Oncology 66:275–281
    [Google Scholar]
  34. Terry G., Ho L., Cuzick J. 1997; Analysis of the E2 amino acid variants of human papillomavirus types 16 and 18 and their associations with lesion grade and HLA DR/DQ type. International Journal of Cancer 73:651–655
    [Google Scholar]
  35. van Duin M., Snijders P. J., Vosen M. T., Klaassen E., Voorhorst F., Verheijen R. H., Helmerhorst T. J., Meijer C. J., Walboomers J. M. 2000; Analysis of human papillomavirus type 16 E6 variants in relation to p53 codon 72 polymorphism genotypes in cervical carcinogenesis. Journal of General Virology 81:317–325
    [Google Scholar]
  36. Veress G., Szarka K., Dong X.-P., Gergely L., Pfister H. 1999; Functional significance of sequence variation in the E2 gene and the long control region of human papillomavirus type 16. Journal of General Virology 80:1035–1043
    [Google Scholar]
  37. Villa L. L., Franco E. L., Caballero O., Rahal P., Ferenczy A., Rohan T. E. 1996; Virus load, persistent cervical HPV infection, and cumulative risk of cervical intraepithelial neoplasia in a high-risk area. 15th International Papillomavirus Conference (Gold Coast, Australia:
    [Google Scholar]
  38. Villa L. L., Rahal P., Franco E. L. 1997; Molecular variant analysis as a tool in natural history studies of human papillomavirus infection and cervical neoplasia. In New Developments in Cervical Cancer Screening and Prevention pp 379–385 Edited by Franco E. L., Monsonego J. Oxford: Blackwell Science;
    [Google Scholar]
  39. Wheeler C. M., Yamada T., Hildesheim A., Jenison S. A. 1997; Human papillomavirus type 16 sequences variants: identification by E6 and L1 lineage-specific hybridization. Journal of Clinical Microbiology 35:11–19
    [Google Scholar]
  40. Xi L. F., Demers W., Koutsky L. A., Kiviat N. B., Kuypers J., Watts D. H., Holmes K. K., Galloway D. A. 1995; Analysis of human papillomavirus type 16 variants indicates establishment of persistent infection. Journal of Infectious Diseases 172:747–755
    [Google Scholar]
  41. Xi L. F., Koutsky L. A., Galloway D. A., Kuypers J., Hughes J. P., Wheeler C. M., Holmes C., Kiviat N. B. 1997; Genomic variation of human papillomavirus type 16 and risk for high-grade cervical intraepithelial neoplasia. Journal of the National Cancer Institute 89:796–802
    [Google Scholar]
  42. Xi L. F., Critchlow C. W., Wheeler C. M., Koutsky L. A., Galloway D. A., Kuypers J., Hughes J. P., Hawes S. E., Surawicz C., Goldbaum G., Holmes K. K., Kiviat N. B. 1998; Risk of anal carcinoma in situ in relation to human papillomavirus type 16 variants. Cancer Research 58:3839–3844
    [Google Scholar]
  43. Yamada T., Wheeler C. M., Halpern A. L., Stewart A. C. M., Hildesheim A., Jenison S. A. 1995; Human papillomavirus type 16 lineages in the United States populations characterized by nucleotide sequence analysis of the E6, L2 and L1 coding segments. Journal of Virology 69:7743–7753
    [Google Scholar]
  44. Yamada T., Manos M., Peto J., Greer C. E., Muñoz N., Bosch X., Wheeler C. M. 1997; Human papillomavirus type 16 sequence variation in cervical cancers: a worldwide perspective. Journal of Virology 71:2463–2472
    [Google Scholar]
  45. Zehbe I., Tommasino M. 1999; The biological significance of human papillomavirus type 16 variants for the development of cervical neoplasia. Papillomavirus Report 10:105–116
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-12-2959
Loading
/content/journal/jgv/10.1099/0022-1317-81-12-2959
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error