1887

Abstract

The unique region of structural protein VP1 of parvovirus B19 (erythrovirus B19) is important for eliciting neutralizing antibodies that are responsible for eliminating the virus from the peripheral blood and for inducing lifelong immunity. Neutralizing human MAbs bind a conformationally defined epitope spanning VP1 residues 30–42. The DNA sequence encoding the VP1-unique region was determined in parvovirus B19 isolated from peripheral blood and amniotic fluid of nine acutely infected pregnant women, five arthritis patients and two chronically infected children. The amino acid sequences of the VP1-unique region exhibited higher variability in comparison with other B19-specific proteins. To analyse the influence of amino acid variations on antibody binding and protein conformation, two variants of the VP1-unique region were selected and expressed in as intein-fusion proteins. The selected variants displayed a number of amino acid exchanges in the VP1-unique region and had mutations in the determined epitope and adjacent regions. After purification via affinity chromatography, the dissociation constants of VP1-specific human MAbs interacting with the variant antigens and a viral prototype of the VP1-unique region were determined with a quartz crystal microbalance biosensor. A value of 5·4×10 M was determined for the prototype isolate pJB; the affinity constants for the variant VP1-unique regions were similar. Comparable values were obtained for interaction of antibodies with non-infectious VP1/VP2 capsids produced by recombinant baculovirus and with B19 virions from amniotic fluid. It is concluded that the conformation of the epitope is unaffected by mutations or the environment of the VP1-unique region in virus capsids.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-1-191
2001-01-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/1/0820191a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-1-191&mimeType=html&fmt=ahah

References

  1. Anderson M. J., Jones S. E., Fisher-Hoch S. P., Lewis E., Hall S. M., Bartlett C. L., Cohen B. J., Mortimer P. P., Pereira M. S. 1983; Human parvovirus, the cause of erythema infectiosum (fifth disease)?. Lancet i:1378
    [Google Scholar]
  2. Anderson M. J., Higgins P. G., Davis L. R., Willman J. S., Jones S. E., Kidd I. M., Pattison J. R., Tyrrell D. A. 1985; Experimental parvoviral infection in humans. Journal of Infectious Diseases 152:257–265
    [Google Scholar]
  3. Bansal G. P., Hatfield J. A., Dunn F. E., Kramer A. A., Brady F., Riggin C. H., Collett M. S., Yoshimoto K., Kajigaya S., Young N. S. 1993; Candidate recombinant vaccine for human B19 parvovirus. Journal of Infectious Diseases 167:1034–1044
    [Google Scholar]
  4. Brown T., Anand A., Ritchie L. D., Clewley J. P., Reid T. M. 1984; Intrauterine parvovirus infection associated with hydrops fetalis. Lancet ii:1033–1034
    [Google Scholar]
  5. Brown C. S., Van Lent J. W., Vlak J. M., Spaan W. J. 1991; Assembly of empty capsids by using baculovirus recombinants expressing human parvovirus B19 structural proteins. Journal of Virology 65:2702–2706
    [Google Scholar]
  6. Cossart Y. E., Field A. M., Cant B., Widdows D. 1975; Parvovirus-like particles in human sera. Lancet i:72–73
    [Google Scholar]
  7. Cotmore S. F., McKie V. C., Anderson L. J., Astell C. R., Tattersall P. 1986; Identification of the major structural and nonstructural proteins encoded by human parvovirus B19 and mapping of their genes by procaryotic expression of isolated genomic fragments. Journal of Virology 60:548–557
    [Google Scholar]
  8. Erdman D. D., Durigon E. L., Wang Q.-Y., Anderson L. J. 1996; Genetic diversity of human parvovirus B19: sequence analysis of the VP1/VP2 gene from multiple isolates. Journal of General Virology 77:2767–2774
    [Google Scholar]
  9. Foto F., Saag K. G., Scharosch L. L., Howard E. J., Naides S. J. 1993; Parvovirus B19-specific DNA in bone marrow from B19 arthropathy patients: evidence for B19 virus persistence. Journal of Infectious Diseases 167:744–748
    [Google Scholar]
  10. Gigler A., Dorsch S., Hemauer A., Williams C., Kim S., Young N. S., Zolla-Pazner S., Wolf H., Gorny M. K., Modrow S. 1999; Generation of neutralizing human monoclonal antibodies against parvovirus B19 proteins. Journal of Virology 73:1974–1979
    [Google Scholar]
  11. Hasle H., Kerndrup G., Jacobsen B. B., Heegaard E. D., Hornsleth A., Lillevang S. T. 1994; Chronic parvovirus infection mimicking myelodysplastic syndrome in a child with subclinical immunodeficiency. American Journal of Pediatric Hematology and Oncology 16:329–333
    [Google Scholar]
  12. Hemauer A., von Poblotzki A., Gigler A., Cassinotti P., Siegl G., Wolf H., Modrow S. 1996; Sequence variability among different parvovirus B19 isolates. Journal of General Virology 77:1781–1785
    [Google Scholar]
  13. Hokynar K., Brunstein J., Söderlund-Venermo M., Kiviluoto O., Partio E. K., Konttinen Y., Hedman K. 2000; Integrity and full coding sequence of B19 virus DNA persisting in human synovial tissue. Journal of General Virology 81:1017–1025
    [Google Scholar]
  14. Johansen J. N., Christensen L. S., Zakrzewska K., Carlsen K., Hornsleth A., Azzi A. 1998; Typing of European strains of parvovirus B19 by restriction endonuclease analyses and sequencing: identification of evolutionary lineages and evidence of recombination of markers from different lineages. Virus Research 53:215–223
    [Google Scholar]
  15. Kößlinger C., Drost S., Aberl F., Wolf H., Koch S., Woias P. 1992; A quartz crystal biosensor for measurement in liquids. Biosensors and Bioelectronics 7:397–404
    [Google Scholar]
  16. Kurtzman G. J., Ozawa K., Cohen B., Hanson G., Oseas R., Young N. S. 1987; Chronic bone marrow failure due to persistent B19 parvovirus infection. New England Journal of Medicine 317:287–294
    [Google Scholar]
  17. Kurtzman G. J., Cohen B. J., Field A. M., Oseas R., Blaese R. M., Young N. S. 1989a; Immune response to B19 parvovirus and an antibody defect in persistent viral infection. Journal of Clinical Investigation 84:1114–1123
    [Google Scholar]
  18. Kurtzman G., Frickhofen N., Kimball J., Jenkins D. W., Nienhuis A. W., Young N. S. 1989b; Pure red-cell aplasia of 10 years’ duration due to persistent parvovirus B19 infection and its cure with immunoglobulin therapy. New England Journal of Medicine 321:519–523
    [Google Scholar]
  19. Mori J., Beattie P., Melton D. W., Cohen B. J., Clewley J. P. 1987; Structure and mapping of the DNA of human parvovirus B19. Journal of General Virology 68:2797–2806
    [Google Scholar]
  20. Naides S. J., Scharosch L. L., Foto F., Howard E. J. 1990; Rheumatologic manifestations of human parvovirus B19 infection in adults. Initial two-year clinical experience. Arthritis and Rheumatism 33:1297–1309
    [Google Scholar]
  21. Ozawa K., Young N. 1987; Characterization of capsid and noncapsid proteins of B19 parvovirus propagated in human erythroid bone marrow cell cultures. Journal of Virology 61:2627–2630
    [Google Scholar]
  22. Pont J., Puchhammer-Stockl E., Chott A., Popow-Kraupp T., Kienzer H., Postner G., Honetz N. 1992; Recurrent granulocytic aplasia as clinical presentation of a persistent parvovirus B19 infection. British Journal of Haematology 80:160–165
    [Google Scholar]
  23. Reid D. M., Reid T. M., Brown T., Rennie J. A., Eastmond C. J. 1985; Human parvovirus-associated arthritis: a clinical and laboratory description. Lancet i:422–425
    [Google Scholar]
  24. Rosenfeld S. J., Yoshimoto K., Kajigaya S., Anderson S., Young N. S., Field A., Warrener P., Bansal G., Collett M. S. 1992; Unique region of the minor capsid protein of human parvovirus B19 is exposed on the virion surface. Journal of Clinical Investigation 89:2023–2029
    [Google Scholar]
  25. Rosenfeld S. J., Young N. S., Alling D., Ayub J., Saxinger C. 1994; Subunit interaction in B19 parvovirus empty capsids. Archives of Virology 136:9–18
    [Google Scholar]
  26. Sato H., Hirata J., Kuroda N., Shiraki H., Maeda Y., Okochi K. 1991a; Identification and mapping of neutralizing epitopes of human parvovirus B19 by using human antibodies. Journal of Virology 65:5485–5490
    [Google Scholar]
  27. Sato H., Hirata J., Furukawa M., Kuroda N., Shiraki H., Maeda Y., Okochi K. 1991b; Identification of the region including the epitope for a monoclonal antibody which can neutralize human parvovirus B19. Journal of Virology 65:1667–1672
    [Google Scholar]
  28. Sauerbrey G. Z. 1959; The use of oscillators for weighting thin layers and for microweighting. Zeitschrift für Physik 155:209–212
    [Google Scholar]
  29. Serjeant G. R., Serjeant B. E., Thomas P. W., Anderson M. J., Patou G., Pattison J. R. 1993; Human parvovirus infection in homozygous sickle cell disease. Lancet 341:1237–1240
    [Google Scholar]
  30. Shade R. O., Blundell M. C., Cotmore S. F., Tattersall P., Astell C. R. 1986; Nucleotide sequence and genome organization of human parvovirus B19 isolated from the serum of a child during aplastic crisis. Journal of Virology 58:921–936
    [Google Scholar]
  31. Stryer L. 1991; Molecular immunology. In Biochemistry, 3rd edn. pp 926–947 San Francisco: W. H. Freeman;
    [Google Scholar]
  32. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences, USA 76:4350–4354
    [Google Scholar]
  33. Ueno Y., Umadome H., Shimodera M., Kishimoto I., Ikegaya K., Yamauchi T. 1993; Human parvovirus B19 and arthritis. Lancet 341:1280
    [Google Scholar]
  34. Uttenthaler E., Kosslinger C., Drost S. 1998; Characterization of immobilization methods for African swine fever virus protein and antibodies with a piezoelectric immunosensor. Biosensors and Bioelectronics 13:1279–1286
    [Google Scholar]
  35. van Elsacker-Niele A. M. W., Kroes A. C. M. 1999; Human parvovirus B19: relevance in internal medicine. Netherlands Journal of Medicine 54:221–230
    [Google Scholar]
  36. Willwand K., Hirt B. 1993; The major capsid protein VP2 of minute virus of mice (MVM) can form particles which bind to the 3′-terminal hairpin of MVM replicative-form DNA and package single-stranded viral progeny DNA. Journal of Virology 67:5660–5663
    [Google Scholar]
  37. Yoshimoto K., Rosenfeld S., Frickhofen N., Kennedy D., Hills R., Kajigaya S., Young N. S. 1991; A second neutralizing epitope of B19 parvovirus implicates the spike region in the immune response. Journal of Virology 65:7056–7060
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-1-191
Loading
/content/journal/jgv/10.1099/0022-1317-82-1-191
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error