1887

Abstract

To explore further the phylogenetic relationships between human enteroviruses and to develop new diagnostic approaches, we designed a pair of generic primers in order to study a 1452 bp genomic fragment (relative to the poliovirus Mahoney genome), including the 3′ end of the VP1-coding region, the 2A- and 2B-coding regions, and the 5′ moiety of the 2C-coding region. Fifty-nine of the 64 prototype strains and 45 field isolates of various origins, involving 21 serotypes and 6 strains untypeable by standard immunological techniques, were successfully amplified with these primers. By determining the nucleotide sequence of the genomic fragment encoding the C-terminal third of the VP1 capsid protein we developed a molecular typing method based on RT–PCR and sequencing. If field isolate sequences were compared to human enterovirus VP1 sequences available in databases, nucleotide identity score was, in each case, highest with the homotypic prototype (74.8 to 89.4%). Phylogenetic trees were generated from alignments of partial VP1 sequences with several phylogeny algorithms. In all cases, the new classification of enteroviruses into five identified species was confirmed and strains of the same serotype were always monophyletic. Analysis of the results confirmed that the 3′ third of the VP1-coding sequence contains serotype-specific information and can be used as the basis of an effective and rapid molecular typing method. Furthermore, the amplification of such a long genomic fragment, including non-structural regions, is straightforward and could be used to investigate genome variability and to identify recombination breakpoints or specific attributes of pathogenicity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-1-79
2001-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/1/0820079a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-1-79&mimeType=html&fmt=ahah

References

  1. Badorff C., Lee G. H., Lamphear B. J., Martone M. E., Campbell K. P., Rhoads R. E., Knowlton K. U. 1999; Enteroviral protease 2A cleaves dystrophin: evidence of cytoskeletal disruption in an acquired cardiomyopathy. [see comments] Nature Medicine 5:320–326
    [Google Scholar]
  2. Balanant J., Guillot S., Candrea A., Delpeyroux F., Crainic R. 1991; The natural genomic variability of poliovirus analyzed by a restriction fragment length polymorphism assay. Virology 184:645–654
    [Google Scholar]
  3. Committee on Enteroviruses 1962; Classification of human enteroviruses. Virology 16:501–504
    [Google Scholar]
  4. el-Sageyer M. M., Szendroi A., Hutter E., Uj M., Szucs G., Mezey I., Toth I., Katai A., Kapiller Z., Pall G., Petras G., Szalay E., Mihaly I., Gourova S., Berencsi G. 1998; Characterisation of an echovirus type 11′ epidemic strain causing haemorrhagic syndrome in newborn babies in Hungary. Acta Virologica 42:157–166
    [Google Scholar]
  5. Felsenstein J. 1993 PHYLIP: phylogeny inference package, version 3.5c (computer program). Distributed by the author Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  6. Gjoen K., Bruu A. L., Orstavik I. 1996; Intratypic genome variability of echovirus type 30 in part of the VP4/VP2 coding region. Archives of Virology 141:901–908
    [Google Scholar]
  7. Guillot S., Otelea D., Delpeyroux F., Crainic R. 1994; Point mutations involved in the attenuation/neurovirulence alternation in type 1 and 2 oral polio vaccine strains detected by site-specific polymerase chain reaction. Vaccine 12:503–507
    [Google Scholar]
  8. Hagiwara A., Tagaya I., Yoneyama T. 1978; Common antigen between coxsackievirus A 16 and enterovirus 71. Microbiology and Immunology 22:81–88
    [Google Scholar]
  9. Harris L. F., Haynes R. E., Cramblett H. G., Conant R. M., Jenkins G. R. 1973; Antigenic analysis of echoviruses 1 and 8. Journal of Infectious Diseases 127:63–68
    [Google Scholar]
  10. Ho M., Chen E. R., Hsu K. H., Twu S. J., Chen K. T., Tsai S. F., Wang J. R., Shih S. R. 1999; An epidemic of enterovirus 71 infection in Taiwan. Taiwan Enterovirus Epidemic Working Group. [see comments] New England Journal of Medicine 341:929–935
    [Google Scholar]
  11. Hughes P. J., Stanway G. 2000; The 2A proteins of three diverse picornaviruses are related to each other and to the H-rev107 family of proteins involved in the control of cell proliferation. Journal of General Virology 81:201–207
    [Google Scholar]
  12. Huttunen P., Santti J., Pulli T., Hyypiä T. 1996; The major echovirus group is genetically coherent and related to coxsackie B viruses. Journal of General Virology 77:715–725
    [Google Scholar]
  13. Hyypiä T., Horsnell C., Maaronen M., Khan M., Kalkkinen N., Auvinen P., Kinnunen L., Stanway G. 1992; A distinct picornavirus group identified by sequence analysis. Proceedings of the National Academy of Sciences, USA 89:8847–8851
    [Google Scholar]
  14. Hyypiä T., Hovi T., Knowles N. J., Stanway G. 1997; Classification of enteroviruses based on molecular and biological properties. Journal of General Virology 78:1–11
    [Google Scholar]
  15. Kapsenberg J. G. 1988; Picornaviridae: The Enteroviruses (Polioviruses, Coxsackieviruses, Echoviruses). In Laboratory Diagnosis of Infectious Diseases Principles and Practice, vol. II, Viral Rickettsial and Chlamydial Diseases pp 692–722 Edited by Lennette P. H. E. H., Murphy F. A. New York: Springer-Verlag;
    [Google Scholar]
  16. Kew O. M., Mulders M. N., Lipskaya G. Y., da Silva E. E., Pallansch M. A. 1995; Molecular epidemiology of polioviruses. Seminars in Virology 6:401–414
    [Google Scholar]
  17. Kilpatrick D. R., Nottay B., Yang C. F., Yang S. J., Dasilva E., Penaranda S., Pallansch M., Kew O. 1998; Serotype-specific identification of polioviruses by PCR using primers containing mixed-base or deoxyinosine residues at positions of codon degeneracy. Journal of Clinical Microbiology 36:352–357
    [Google Scholar]
  18. Kishino H., Hasegawa M. 1989; Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. Journal of Molecular Evolution 29:170–179
    [Google Scholar]
  19. Kopecka H., Brown B., Pallansch M. 1995; Genotypic variation in coxsackievirus B5 isolates from three different outbreaks in the United States. Virus Research 38:125–136
    [Google Scholar]
  20. Lindberg A. M., Polacek C. 2000; Molecular analysis of the prototype coxsackievirus B5 genome. Archives of Virology 145:205–221
    [Google Scholar]
  21. Mateu M. G. 1995; Antibody recognition of picornaviruses and escape from neutralization: a structural view. Virus Research 38:1–24
    [Google Scholar]
  22. Mayo M. A., Pringle C. R. 1998; Virus taxonomy – 1997. Journal of General Virology 79:649–657
    [Google Scholar]
  23. Melnick J. L. 1996; Enteroviruses: polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses. In Fields Virology, 3rd edn. pp 655–712 Edited by Knipe D. M., Fields B. N., Howley P. M. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  24. Melnick J. L., Rennick V., Hampil B., Schmidt N. J., Ho H. H. 1973; Lyophilized combination pools of enterovirus equine antisera: preparation and test procedures for the identification of field strains of 42 enteroviruses. Bulletin of the World Health Organization 48:263–268
    [Google Scholar]
  25. Muir P., Kammerer U., Korn K., Mulders M. N., Pöyry T., Weissbrich B., Kandolf R., Cleator G. M., van Loon A. M. 1998; Molecular typing of enteroviruses: current status and future requirements. The European Union Concerted Action on Virus Meningitis and Encephalitis. Clinical Microbiology Reviews 11:202–227
    [Google Scholar]
  26. Nelsen-Salz B., Schildgen O., Klein M., Hadaschik D., Eggers H. J., Zimmermann H. 1999; Determinants of pathogenicity of echovirus 9 in men: significance of a functional RGD-motif. Zentralblatt für Bakteriologie 289:347–354
    [Google Scholar]
  27. Oberste M. S., Maher K., Pallansch M. A. 1998; Molecular phylogeny of all human enterovirus serotypes based on comparison of sequences at the 5′ end of the region encoding VP2. Virus Research 58:35–43
    [Google Scholar]
  28. Oberste M. S., Maher K., Kilpatrick D. R., Flemister M. R., Brown B. A., Pallansch M. A. 1999a; Typing of human enteroviruses by partial sequencing of VP1. Journal of Clinical Microbiology 37:1288–1293
    [Google Scholar]
  29. Oberste M. S., Maher K., Kilpatrick D. R., Pallansch M. A. 1999b; Molecular evolution of the human enteroviruses: correlation of serotype with VP1 sequence and application to picornavirus classification. Journal of Virology 73:1941–1948
    [Google Scholar]
  30. Oberste M. S., Maher K., Flemister M. R., Marchetti G., Kilpatrick D. R., Pallansch M. A. 2000; Comparison of classic and molecular approaches for the identification of untypeable enteroviruses. Journal of Clinical Microbiology 38:1170–1174
    [Google Scholar]
  31. Page R. D. 1996; TreeView: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12:357–358
    [Google Scholar]
  32. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proceedings of the National Academy of Sciences, USA 85:2444–2448
    [Google Scholar]
  33. Pöyry T., Kinnunen L., Hyypiä T., Brown B., Horsnell C., Hovi T., Stanway G. 1996; Genetic and phylogenetic clustering of enteroviruses. Journal of General Virology 77:1699–1717
    [Google Scholar]
  34. Pringle C. R. 1999; Virus taxonomy at the XIth International Congress of Virology, Sydney, Australia, 1999. Archives of Virology 144:2065–2070
    [Google Scholar]
  35. Pulli T., Koskimies P., Hyypiä T. 1995; Molecular comparison of coxsackie A virus serotypes. Virology 212:30–38
    [Google Scholar]
  36. Romero J. R. 1999; Reverse-transcription polymerase chain reaction detection of the enteroviruses. Archives of Pathology and Laboratory Medicine 123:1161–1169
    [Google Scholar]
  37. Rotbart H. A. 1995; Enteroviral infections of the central nervous system. Clinical Infectious Diseases 20:971–981
    [Google Scholar]
  38. Rueckert R. R. 1996; Picornaviridae : The viruses and their replication. In Fields Virology, 3rd edn. pp 609–654 Edited by Knipe D. M., Fields B. N., Howley P. M. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  39. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4:406–425
    [Google Scholar]
  40. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  41. Strimmer K., von Haeseler A. 1996; Quartet puzzling: A quartet maximum-likelihood method for reconstructing tree topologies. Molecular Biology and Evolution 13:964–969
    [Google Scholar]
  42. Thompson J. D., Higgins D. G., Gibson T. J. 1994; CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22:4673–4680
    [Google Scholar]
  43. Zhang G., Haydon D. T., Knowles N. J., McCauley J. W. 1999; Molecular evolution of swine vesicular disease virus. Journal of General Virology 80:639–651
    [Google Scholar]
  44. Zimmermann H., Eggers H. J., Nelsen-Salz B. 1996; Molecular cloning and sequence determination of the complete genome of the virulent echovirus 9 strain Barty. Virus Genes 12:149–154
    [Google Scholar]
  45. Zimmermann H., Eggers H. J., Nelsen-Salz B. 1997; Cell attachment and mouse virulence of echovirus 9 correlate with an RGD motif in the capsid protein VP1. Virology 233:149–156
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-1-79
Loading
/content/journal/jgv/10.1099/0022-1317-82-1-79
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error