1887

Abstract

An isolate of Strawberry mottle virus (SMoV) was transferred from to and by mechanical inoculation. Electron micrographs of infected tissues showed the presence of isometric particles of approximately 28 nm in diameter. SMoV-associated tubular structures were also conspicuous, particularly in the plasmodesmata of . DsRNA extraction of SMoV-infected yielded two bands of 6·3 and 7·8 kbp which were cloned and sequenced. Gaps in the sequence, including the 5′ and 3′ ends, were filled using RT–PCR and RACE. The genome of SMoV was found to consist of RNA1 and RNA2 of 7036 and 5619 nt, respectively, excluding a poly(A) tail. Each RNA encodes one polyprotein and has a 3′ non-coding region of ∼1150 nt. The polyprotein of RNA1 contains regions with identities to helicase, viral genome-linked protein, protease and polymerase (RdRp), and shares its closest similarity with RNA1 of the tentative nepovirus Satsuma dwarf virus (SDV). The polyprotein of RNA2 displayed some similarity to the large coat protein domain of SDV and related viruses. Phylogenetic analysis of the RdRp region showed that SMoV falls into a separate group containing SDV, Apple latent spherical virus, Naval orange infectious mottling virus and . Given the size of RNA2 and the presence of a long 3′ non-coding region, SMoV is more typical of a nepovirus, although atypically for a nepovirus it is aphid transmissible. We propose that SMoV is a tentative member of an SDV-like lineage of picorna-like viruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-1-229
2002-01-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/1/0830229a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-1-229&mimeType=html&fmt=ahah

References

  1. Adams A. N., Barbara D. J. 1986; Transmission of a virus from Fragaria vesca infected with strawberry mottle virus to Chenopodium quinoa. Acta Horticulturae (Wageningen 186:71–76
    [Google Scholar]
  2. Blok V. C., Wardell J., Jolly C. A., Manoukian A., Robinson D. J., Edwards M. L., Mayo M. A. 1992; The nucleotide sequence of RNA-2 of raspberry ringspot nepovirus. Journal of General Virology 73:2189–2194
    [Google Scholar]
  3. Brown D. J. F., Trudgill D. L., Robertson W. M. 1996; Nepoviruses: transmission by nematodes. In The Plant Viruses pp 187–209 Edited by Harrison B. D., Murant A. F. New York: Plenum Press;
    [Google Scholar]
  4. Chen X., Breuning G. 1992; Nucleotide sequence and genetic map of cowpea severe mosaic RNA2 and comparisons with RNA2 of other comoviruses. Virology 187:682–692
    [Google Scholar]
  5. Dunleavy J. M. 1957; The grasshopper as a vector of tobacco ringspot virus in soybean. Phytopathology 47:681–682
    [Google Scholar]
  6. Francki R. I. B., Milne R. G., Hatta T. 1987 Atlas of Plant Viruses 2 Boca Raton: CRC Press;
    [Google Scholar]
  7. Frazier N. W. 1968; Transmission of strawberry mottle virus by juice and aphids to herbaceous hosts. Plant Disease Reporter 52:64–67
    [Google Scholar]
  8. Frazier N. W. 1974; Six new strawberry indicator clones evaluated for the detection and diagnosis of twelve graft-transmissible diseases. Plant Disease Reporter 58:28–31
    [Google Scholar]
  9. Frazier N. W., Sylvester E. S. 1960; Half-lives of transmissibility of two aphid-borne viruses. Virology 12:233–244
    [Google Scholar]
  10. Fuchs M., Pinck M., Serghini M. A., Ravelonandro M., Walter B., Pinck L. 1989; The nucleotide sequence of satellite RNA in grapevine fanleaf virus, strain F13. Journal of General Virology 70:955–962
    [Google Scholar]
  11. Goldbach R. W., Wellink J. 1996; Comoviruses: molecular biology and replication. In The Plant Viruses pp 35–76 Edited by Harrison B. D., Murant A. F. New York: Plenum Press;
    [Google Scholar]
  12. Gorbalenya A. E., Donchenko A. P., Blinov V. M., Koonin E. V. 1989; Cysteine proteases of positive strand RNA viruses and chymotrypsin-like serine proteases. FEBS Letters 243:103–114
    [Google Scholar]
  13. Gorbalenya A. E., Koonin E. V., Wolf Y. I. 1990; A new superfamily of putative NTP-binding domains encoded by genomes of small DNA and RNA viruses. FEBS Letters 262:145–148
    [Google Scholar]
  14. Govan V. A., Leat N., Allsopp M., Davison S. 2000; Analysis of the complete genome sequence of acute bee paralysis virus shows that it belongs to the novel group of insect-infecting RNA viruses. Virology 277:457–463
    [Google Scholar]
  15. Hadjeb N., Berkowitz G. A. 1996; Preparation of T-overhang vectors with high PCR product cloning efficiency. Biotechniques 20:20–22
    [Google Scholar]
  16. Hayat M. A. 1972 Principles and Techniques of Electron Microscopy New York: Van Nostrand Reinhold;
    [Google Scholar]
  17. Iwanami T., Kondo Y., Makita Y., Azeyanagi C., Ieki H. 1998; The nucleotide sequence of the coat protein genes of satsuma dwarf virus and navel orange infectious mottling virus. Archives of Virology 143:405–412
    [Google Scholar]
  18. Iwanami T., Kondo Y., Karasev A. V. 1999; Nucleotide sequences and taxonomy of satsuma dwarf virus. Journal of General Virology 80:793–797
    [Google Scholar]
  19. Jelkmann W., Martin R. R., Maiss E. 1989; Cloning of four plant viruses from small quantities of double-stranded RNA. Phytopathology 79:1250–1253
    [Google Scholar]
  20. Karasev A. V., Han S. S., Iwanami T. 2001; Satsuma dwarf and related viruses belong to a new lineage of plant picorna-like viruses. Virus Genes 23:45–52
    [Google Scholar]
  21. Kitajima E. W., Betti J. A., Costa A. S. 1971; Isometric, viruslike particles in leaf tissues of Fragaria vesca L. infected with strawberry mottle virus. Ciencia e Cultura (Sao Paulo) 23:649–655
    [Google Scholar]
  22. Koonin E. V. 1991; The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. Journal of General Virology 72:2197–2206
    [Google Scholar]
  23. Kozak M. 1986; Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292
    [Google Scholar]
  24. Kreiah S., Strunk G., Cooper J. I. 1994; Sequence analysis and location of capsid proteins within RNA2 of strawberry latent ringspot virus. Journal of General Virology 75:2527–2532
    [Google Scholar]
  25. Leone G., Lindner J. L., Schoen C. D. 1992; Attempts to purify strawberry viruses by non-conventional separation methods. Acta Horticulturae 308:121–129
    [Google Scholar]
  26. Leone G., Lindner J. L., Schoen C. D. 1995; Unstable infectivity and abundant viral RNAs associated with strawberry mottle virus. Acta Horticulturae (Wageningen) 385:76–85
    [Google Scholar]
  27. Li C., Yoshikawa N., Takahashi T., Ito T., Yoshida K., Koganezawa H. 2000; Nucleotide sequence and genome organisation of apple latent spherical virus: a new virus classified into the family Comoviridae. Journal of General Virology 81:541–547
    [Google Scholar]
  28. Lipman W. R., Pearson D. J. 1988; Improved tools for biological sequence comparison. Proceedings of the National Academy of Sciences, USA 85:2444–2448
    [Google Scholar]
  29. Lütcke H. A., Chow K. C., Mickel F. S., Moss K. A., Kern H. F., Scheele G. A. 1987; Selection of AUG initiation codons differs in plants and animals. EMBO Journal 6:43–48
    [Google Scholar]
  30. Martelli G. P. 1980; Ultrastructural aspects of possible defence reactions in virus-infected plant cells. Microbiologica 3:369–391
    [Google Scholar]
  31. Mayo M. A., Fritsch C. 1994; A possible consensus sequence for VPg of viruses in the family Comoviridae. FEBS Letters 354129–130
    [Google Scholar]
  32. Mayo M. A., Robinson D. J. 1996; Nepoviruses: molecular biology and replication. In The Plant Viruses pp 139–185 Edited by Harrison B. D., Murant A. F. New York: Plenum Press;
    [Google Scholar]
  33. Melcher U. 2000; The ‘30K’ superfamily of viral movement proteins. Journal of General Virology 81:257–266
    [Google Scholar]
  34. Mellor F. C., Krczal H. 1987; Strawberry mottle. In Virus Diseases of Small Fruits , USDA Agricultural Handbook 631 pp 10–16
    [Google Scholar]
  35. Messieha M. 1969; Transmission of tobacco ringspot virus by thrips. Phytopathology 59:943–945
    [Google Scholar]
  36. Murant A. F., Roberts I. M., Goold R. A. 1973; Cytopathological changes and extractable infectivity in Nicotiana clevelandii leaves infected with carrot mottle virus. Journal of General Virology 21:269–283
    [Google Scholar]
  37. Mushegian A. R. 1994; The putative movement domain encoded by nepovirus RNA-2 is conserved in all sequenced nepoviruses. Archives of Virology 135:437–441
    [Google Scholar]
  38. Rani S., Verma H. N., Verma G. S. 1969; A virus disease in Petunia hybrida. Plant Disease Reporter 53:903–907
    [Google Scholar]
  39. Ritzenthaler C., Viry M., Pinck M., Margis R., Margis R., Fuchs M., Pinck L. 1991; Complete nucleotide sequence and genetic organization of grapevine fanleaf nepovirus RNA1. Journal of General Virology 72:2357–2365
    [Google Scholar]
  40. Rott M. E., Jelkmann W. 2001; Characterization and detection of several filamentous viruses of cherry: adaption of an alternative cloning method (DOP–PCR), and modification of an RNA extraction protocol. European Journal of Plant Pathology 107:411–420
    [Google Scholar]
  41. Rott M. E., Tremaine J. H., Rochon D. M. 1991; Comparison of the 5′ and 3′ termini of tomato ringspot virus RNA1 and RNA2: evidence for RNA recombination. Virology 185:468–472
    [Google Scholar]
  42. Rott M. E., Gilchrist A., Lee L., Rochon D. M. 1995; Nucleotide sequence of tomato ringspot virus RNA1. Journal of General Virology 76:465–471
    [Google Scholar]
  43. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  44. Schoen C. D., Leone G. 1995; Towards molecular detection methods for aphid-borne strawberry viruses Acta Horticulturae (Wageningen). 38555–63
  45. Schoen C. D., Miglino R., Leone G., Jelkmann W. 1997; Molecular cloning of dsRNAs associated with strawberry mottle virus. Acta Horticulturae (Wageningen) 471:51–55
    [Google Scholar]
  46. Schuster M. F. 1963; Flea beetle transmission of tobacco ringspot virus in the Lower Rio Grande Valley. Plant Disease Reporter 47:510–511
    [Google Scholar]
  47. Serghini M. A., Fuchs M., Pinck M., Reinbolt J., Walter B., Pinck L. 1990; RNA2 of grapevine fanleaf virus: sequence and coat protein cistron location. Journal of General Virology 71:1433–1441
    [Google Scholar]
  48. Shi X., Kaminskyj G. W. 2000; 5′ RACE by tailing a general template switching oligonucleotide. Biotechniques 29:1192–1195
    [Google Scholar]
  49. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25:4876–4882
    [Google Scholar]
  50. Wellink J., van Kammen A. 1988; Proteases involved in the processing of viral proteins. Archives of Virology 98:1–26
    [Google Scholar]
  51. Wilson J. E., Powell M. J., Hoover S. E., Sarnow P. 2000; Naturally occurring dicistronic cricket paralysis virus RNA is RT regulated by two internal ribosome entry sites. Molecular and Cellular Biology 20:4990–4999
    [Google Scholar]
  52. Yoshikawa N., Converse R. H. 1991; Purification and some properties of strawberry mottle virus. Annals of Applied Biology 118:565–576
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-1-229
Loading
/content/journal/jgv/10.1099/0022-1317-83-1-229
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error