1887

Abstract

Natural recombination in poliovirus is a frequent phenomenon. In practice, whenever different genotypes have the opportunity to infect the same individual, a high proportion of viruses with recombinant genomes are excreted. To determine whether enteroviruses other than poliovirus can naturally produce viable virions with recombinant genomes, we studied the molecular features of two distant regions of the viral genomes – the VP1 coding region and the 3D polymerase coding region – of the echovirus serotypes associated with a large outbreak of aseptic meningitis. Nucleotide sequences of nine epidemic strains [belonging to echovirus serotypes 4 (E4), 7 (E7) and 30 (E30)] in the two genomic regions (300 nt of VP1 and 520 nt of 3D polymerase) were compared to prototype and field strains, and phylogenetic trees were generated from alignments. In the VP1 region, each of the three epidemic serotypes clustered with the homotypic prototype strain, whereas in the 3D polymerase region, E7 and E30 grouped as a single cluster, distant from the two corresponding prototype strains. This suggests that one of these two E7 and E30 strains has evolved through recombination with the other or that both have acquired the 3D polymerase coding region from a common ancestor. Our results suggest that such genetic recombinations between different echovirus serotypes are possible when multiple epidemic strains are circulating simultaneously.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-9-2193
2002-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/9/0832193a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-9-2193&mimeType=html&fmt=ahah

References

  1. Cammack N., Philips A., Dunn G., Patel V., Minor P. D. 1988; Intertypic genomic rearrangements of poliovirus strains in vaccinees. Virology 167:507–514
    [Google Scholar]
  2. Caro V., Guillot S., Delpeyroux F., Crainic R. 2001; Molecular strategy for ‘serotyping’ of human enteroviruses. Journal of General Virology 82:79–91
    [Google Scholar]
  3. Crainic R., Kew O. 1993; Evolution and polymorphism of poliovirus genomes. Biologicals 21:379–384
    [Google Scholar]
  4. Drake J. W. 1993; Rates of spontaneous mutation among RNA viruses. Proceedings of the National Academy of Sciences, USA 90:4171–4175
    [Google Scholar]
  5. Felsenstein J. 1993 phylip: phylogeny inference package, version 3.5c. Distributed by the author Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  6. Furione M., Guillot S., Otelea D., Balanant J., Candrea A., Crainic R. 1993; Polioviruses with natural recombinant genomes isolated from vaccine-associated paralytic poliomyelitis. Virology 196:199–208
    [Google Scholar]
  7. Georgescu M. M., Delpeyroux F., Tardy-Panit M., Balanant J., Combiescu M., Combiescu A. A., Guillot S., Crainic R. 1994; High diversity of poliovirus strains isolated from the central nervous system from patients with vaccine-associated paralytic poliomyelitis. Journal of Virology 68:8089–8101
    [Google Scholar]
  8. Georgescu M. M., Delpeyroux F., Crainic R. 1995; Tripartite genome organization of a natural type 2 vaccine/nonvaccine recombinant poliovirus. Journal of General Virology 76:2343–2348
    [Google Scholar]
  9. Guillot S., Caro V., Cuervo N., Korotkova E., Combiescu M., Persu A., Aubert-Combiescu A., Delpeyroux F., Crainic R. 2000; Natural genetic exchanges between vaccine and wild poliovirus strains in humans. Journal of Virology 74:8434–8443
    [Google Scholar]
  10. Holland J., Spindler K., Horodyski F., Grabau E., Nichol S., VandePol S. 1982; Rapid evolution of RNA genomes. Science 215:1577–1585
    [Google Scholar]
  11. Hughes P. J., North C., Minor P. D., Stanway G. 1989; The complete nucleotide sequence of coxsackievirus A21. Journal of General Virology 70:2943–2952
    [Google Scholar]
  12. Huttunen P., Santti J., Pulli T., Hyypiä T. 1996; The major echovirus group is genetically coherent and related to coxsackie B viruses. Journal of General Virology 77:715–725
    [Google Scholar]
  13. Hyypiä T., Hovi T., Knowles N. J., Stanway G. 1997; Classification of enteroviruses based on molecular and biological properties. Journal of General Virology 78:1–11
    [Google Scholar]
  14. Kew O. M., Nottay B. K. 1984; Molecular epidemiology of polioviruses. Reviews of Infectious Diseases 6:S499–S504
    [Google Scholar]
  15. King A. M. 1988; Recombination in positive strand RNA viruses. In RNA Genetics pp 149–165 Edited by Domingo E., Holland J. J., Ahlquist P. Boca Raton, FL: CRC Press;
    [Google Scholar]
  16. Kirkegaard K., Baltimore D. 1986; The mechanism of RNA recombination in poliovirus. Cell 47:433–443
    [Google Scholar]
  17. Kishino H., Hasegawa M. 1989; Evaluation of maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and branching order in hominoidea. Journal of Molecular Evolution 29:170–179
    [Google Scholar]
  18. Kopecka H., Brown B., Pallansch M. 1995; Genotypic variation in coxsackievirus B5 isolates from three different outbreaks in the United States. Virus Research 38:125–136
    [Google Scholar]
  19. Künkel U., Schreier E. 2000; Genetic variability within the VP1 coding region of echovirus type 30 isolates. Archives of Virology 145:1455–1464
    [Google Scholar]
  20. Mayo M., Pringle C. R. 1998; Virus taxonomy – 1997. Journal of General Virology 79:649–657
    [Google Scholar]
  21. Melnick J. L. 1996; Enteroviruses: polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses. In Fields Virology pp 655–712 Edited by Knipe D. M., Fields B. N., Howley P. M. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  22. Muir P., Kammerer U., Korn K., Mulders M. N., Pöyry T., Weissbrich B., Kandolf R., Cleator G. M., van Loon A. M. 1998; Molecular typing of enteroviruses: current status and future requirements. The European Union Concerted Action on Virus Meningitis and Encephalitis. Clinical Microbiology Reviews 11:202–227
    [Google Scholar]
  23. Mulders M. N., Salminen M., Kalkkinen N., Hovi T. 2000; Molecular epidemiology of coxsackievirus B4 and disclosure of the correct VP1/2Apro cleavage site: evidence for high genomic diversity and long-term endemicity of distinct genotypes. Journal of General Virology 81:803–812
    [Google Scholar]
  24. Nairn C., Clements G. B. 1999; A study of enterovirus isolations in Glasgow from 1977 to 1997. Journal of Medical Virology 58:304–312
    [Google Scholar]
  25. Oberste M. S., Maher K., Kilpatrick D. R., Pallansch M. A. 1999a; Molecular evolution of the human enteroviruses: correlation of serotype with VP1 sequence and application to picornavirus classification. Journal of Virology 73:1941–1948
    [Google Scholar]
  26. Oberste M. S., Maher K., Kilpatrick D. R., Flemister M. R., Brown B. A., Pallansch M. A. 1999b; Typing of human enteroviruses by partial sequencing of VP1. Journal of Clinical Microbiology 37:1288–1293
    [Google Scholar]
  27. Oberste M. S., Maher K., Kennett M. L., Campbell J. J., Carpenter M. S., Schnurr D., Pallansch M. A. 1999c; Molecular epidemiology and genetic diversity of echovirus type 30 (E30): genotypes correlate with temporal dynamics of E30 isolation. Journal of Clinical Microbiology 37:3928–3933
    [Google Scholar]
  28. Page R. D. 1996; TreeView: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12:357–358
    [Google Scholar]
  29. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proceedings of the National Academy of Sciences, USA 85:2444–2448
    [Google Scholar]
  30. Pöyry T., Kinnunen L., Hyypiä T., Brown B., Horsnell C., Hovi T., Stanway G. 1996; Genetic and phylogenetic clustering of enteroviruses. Journal of General Virology 77:1699–1717
    [Google Scholar]
  31. Pringle C. R. 1999; Virus taxonomy at the XIth International Congress of Virology. Sydney, Australia: 1999 Archives of Virology 144:2065–2070
    [Google Scholar]
  32. Rotbart H. A., Romero J. R. 1995; Laboratory diagnosis of enteroviral infections. In Human Enterovirus Infections pp 401–418 Edited by Rotbart H. A. Washington, DC: ASM Press;
    [Google Scholar]
  33. Santti J., Hyypiä T., Kinnunen L., Salminen M. 1999; Evidence of recombination among enteroviruses. Journal of Virology 73:8741–8749
    [Google Scholar]
  34. Santti J., Harvala H., Kinnunen L., Hyypiä T. 2000; Molecular epidemiology and evolution of coxsackievirus A9. Journal of General Virology 81:1361–1372
    [Google Scholar]
  35. Stanway G. 1990; Structure, function and evolution of picornaviruses. Journal of General Virology 71:2483–2501
    [Google Scholar]
  36. Strimmer K., von Haeseler A. 1996; Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. Molecular Biology and Evolution 13:964–969
    [Google Scholar]
  37. Supanaranond K., Takeda N., Yamazaki S. 1992; The complete nucleotide sequence of a variant of coxsackievirus A24, an agent causing acute hemorragic conjunctivitis. Virus Genes 6:149–158
    [Google Scholar]
  38. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22:4673–4680
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-9-2193
Loading
/content/journal/jgv/10.1099/0022-1317-83-9-2193
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error