1887

Abstract

CCR3 has been implicated as a co-receptor for human immunodeficiency virus type 1 (HIV-1), particularly in brain microglia cells. We sought to clarify the comparative roles of CCR3 and CCR5 in the central nervous system (CNS) HIV-1 infection and the potential utility of CCR3 as a target for manipulation via gene transfer. To target CCR3, we developed a single-chain antibody (SFv) and an interfering RNA (RNAi), R3-526. Coding sequences for both were cloned into -deleted SV40-dervied vectors, as these vectors transduce brain microglia and monocyte-derived macrophages (MDM) highly efficiently. These anti-CCR3 transgenes were compared to SFv-CCR5, an SFv against CCR5, and RNAi-R5, an RNAi that targets CCR5, for the ability to protect primary human brain microglia and MDM from infection with peripheral and neurotropic strains of HIV-1. Downregulation of CCR3 and CCR5 by these transgenes was independent from one another. Confocal microscopy showed that CCR3 and CCR5 co-localized at the plasma membrane with each other and with CD4. Targeting either CCR5 or CCR3 largely protected both microglia and MDM from infection by many strains of HIV-1. That is, some HIV-1 strains, isolated from either the CNS or periphery, required both CCR3 and CCR5 for optimal productive infection of microglia and MDM. Some HIV-1 strains were relatively purely CCR5-tropic. None was purely CCR3-tropic. Thus, some CNS-tropic strains of HIV-1 utilize CCR5 as a co-receptor but do not need CCR3, while for other isolates both CCR3 and CCR5 may be required.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.006205-0
2009-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/3/710.html?itemId=/content/journal/jgv/10.1099/vir.0.006205-0&mimeType=html&fmt=ahah

References

  1. Aasa-Chapman M. M., Aubin K., Williams I., McKnight A. 2006; Primary CCR5 only using HIV-1 isolates does not accurately represent the in vivo replicating quasi-species. Virology 351:489–496 [CrossRef]
    [Google Scholar]
  2. Albright A. V., Shieh J. T., Itoh T., Lee B., Pleasure D., O'Connor M. J., Doms R. W., Gonzalez-Scarano F. 1999; Microglia express CCR5, CXCR4, and CCR3, but of these, CCR5 is the principal coreceptor for human immunodeficiency virus type 1 dementia isolates. J Virol 73:205–213
    [Google Scholar]
  3. Alkhatib G., Berger E. A., Murphy P. M., Pease J. E. 1997; Determinants of HIV-1 coreceptor function on CC chemokine receptor 3. Importance of both extracellular and transmembrane/cytoplasmic regions. J Biol Chem 272:20420–20426 [CrossRef]
    [Google Scholar]
  4. Berger O., Gan X., Gujuluva C., Burns A. R., Sulur G., Stins M., Way D., Witte M., Weinand M. other authors 1999; CXC and CC chemokine receptors on coronary and brain endothelia. Mol Med 5:795–805
    [Google Scholar]
  5. Bjorndal A., Deng H., Jansson M., Fiore J. R., Colognesi C., Karlsson A., Albert J., Scarlatti G., Littman D. R., Fenyo E. M. 1997; Coreceptor usage of primary human immunodeficiency virus type 1 isolates varies according to biological phenotype. J Virol 71:7478–7487
    [Google Scholar]
  6. Choe H., Farzan M., Sun Y., Sullivan N., Rollins B., Ponath P. D., Wu L., Mackay C. R., LaRosa G. other authors 1996; The β -chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85:1135–1148 [CrossRef]
    [Google Scholar]
  7. Choe H., Farzan M., Konkel M., Martin K., Sun Y., Marcon L., Cayabyab M., Berman M., Dorf M. E. other authors 1998; The orphan seven-transmembrane receptor apj supports the entry of primary T-cell-line-tropic and dualtropic human immunodeficiency virus type 1. J Virol 72:6113–6118
    [Google Scholar]
  8. Cordelier P., Strayer D. S. 2006; Using gene delivery to protect HIV-susceptible CNS cells: inhibiting HIV replication in microglia. Virus Res 118:87–97 [CrossRef]
    [Google Scholar]
  9. Cordelier P., Morse B., Strayer D. S. 2003; Targeting CCR5 with siRNAs: using recombinant SV40-derived vectors to protect macrophages and microglia from R5-tropic HIV. Oligonucleotides 13:281–294 [CrossRef]
    [Google Scholar]
  10. Cordelier P., Kulkowsky J. W., Ko C., Matskevitch A. A., McKee H. J., Rossi J. J., Bouhamdan M., Pomerantz R. J., Kari G., Strayer D. S. 2004; Protecting from R5-tropic HIV: individual and combined effectiveness of a hammerhead ribozyme and a single-chain Fv antibody that targets CCR5. Gene Ther 11:1627–1637 [CrossRef]
    [Google Scholar]
  11. Deng H., Liu R., Ellmeier W., Choe S., Unutmaz D., Burkhart M., Di Marzio P., Marmon S., Sutton R. E. other authors 1996; Identification of a major co-receptor for primary isolates of HIV-1. Nature 381:661–666 [CrossRef]
    [Google Scholar]
  12. Doranz B. J., Rucker J., Yi Y., Smyth R. J., Samson M., Peiper S. C., Parmentier M., Collman R. G., Doms R. W. 1996; A dual-tropic primary HIV-1 isolate that uses fusin and the β -chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 85:1149–1158 [CrossRef]
    [Google Scholar]
  13. Feng Y., Broder C. C., Kennedy P. E., Berger E. A. 1996; HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272:872–877 [CrossRef]
    [Google Scholar]
  14. Gendelman H. E., Baca L. M., Kubrak C. A., Genis P., Burrous S., Friedman R. M., Jacobs D., Meltzer M. S. 1992; Induction of IFN-alpha in peripheral blood mononuclear cells by HIV-infected monocytes. Restricted antiviral activity of the HIV-induced IFN. J Immunol 148:422–429
    [Google Scholar]
  15. Ghorpade A., Xia M. Q., Hyman B. T., Persidsky Y., Nukuna A., Bock P., Che M., Limoges J., Gendelman H. E., Mackay C. R. 1998; Role of the β -chemokine receptors CCR3 and CCR5 in human immunodeficiency virus type 1 infection of monocytes and microglia. J Virol 72:3351–3361
    [Google Scholar]
  16. Gorry P. R., Bristol G., Zack J. A., Ritola K., Swanstrom R., Birch C. J., Bell J. E., Bannert N., Crawford K. other authors 2001; Macrophage tropism of human immunodeficiency virus type 1 isolates from brain and lymphoid tissues predicts neurotropism independent of coreceptor specificity. J Virol 75:10073–10089 [CrossRef]
    [Google Scholar]
  17. He J., Chen Y., Farzan M., Choe H., Ohagen A., Gartner S., Busciglio J., Yang X., Hofmann W. other authors 1997; CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia. Nature 385:645–649 [CrossRef]
    [Google Scholar]
  18. Heath H., Qin S., Rao P., Wu L., LaRosa G., Kassam N., Ponath P. D., Mackay C. R. 1997; Chemokine receptor usage by human eosinophils. The importance of CCR3 demonstrated using an antagonistic monoclonal antibody. J Clin Invest 99:178–184 [CrossRef]
    [Google Scholar]
  19. Ho P. T., Teal B. E., Ross T. M. 2004; Multiple residues in the extracellular domains of CCR3 are critical for coreceptor activity. Virology 329:109–118 [CrossRef]
    [Google Scholar]
  20. Kondo R., Feitelson M. A., Strayer D. S. 1998; Use of SV40 to immunize against hepatitis B surface antigen: implications for the use of SV40 for gene transduction and its use as an immunizing agent. Gene Ther 5:575–582 [CrossRef]
    [Google Scholar]
  21. Lee B., Sharron M., Blanpain C., Doranz B. J., Vakili J., Setoh P., Berg E., Liu G., Guy H. R. other authors 1999; Epitope mapping of CCR5 reveals multiple conformational states and distinct but overlapping structures involved in chemokine and coreceptor function. J Biol Chem 274:9617–9626 [CrossRef]
    [Google Scholar]
  22. Levy J. A., Hoffman A. D., Kramer S. M., Landis J. A., Shimabukuro J. M., Oshiro L. S. 1984; Isolation of lymphocytopathic retroviruses from San Francisco patients with AIDS. Science 225:840–842 [CrossRef]
    [Google Scholar]
  23. Martin-Garcia J., Kolson D. L., Gonzalez-Scarano F. 2002; Chemokine receptors in the brain: their role in HIV infection and pathogenesis. AIDS 16:1709–1730 [CrossRef]
    [Google Scholar]
  24. O'Brien W. A., Koyanagi Y., Namazie A., Zhao J. Q., Diagne A., Idler K., Zack J. A., Chen I. S. 1990; HIV-1 tropism for mononuclear phagocytes can be determined by regions of gp120 outside the CD4-binding domain. Nature 348:69–73 [CrossRef]
    [Google Scholar]
  25. Peters P. J., Bhattacharya J., Hibbitts S., Dittmar M. T., Simmons G., Bell J., Simmonds P., Clapham P. R. 2004; Biological analysis of human immunodeficiency virus type 1 R5 envelopes amplified from brain and lymph node tissues of AIDS patients with neuropathology reveals two distinct tropism phenotypes and identifies envelopes in the brain that confer an enhanced tropism and fusigenicity for macrophages. J Virol 78:6915–6926 [CrossRef]
    [Google Scholar]
  26. Shieh J. T., Albright A. V., Sharron M., Gartner S., Strizki J., Doms R. W., Gonzalez-Scarano F. 1998; Chemokine receptor utilization by human immunodeficiency virus type 1 isolates that replicate in microglia. J Virol 72:4243–4249
    [Google Scholar]
  27. Simmons G., McKnight A., Takeuchi Y., Hoshino H., Clapham P. R. 1995; Cell-to-cell fusion, but not virus entry in macrophages by T-cell line tropic HIV-1 strains: a V3 loop-determined restriction. Virology 209:696–700 [CrossRef]
    [Google Scholar]
  28. Smit T. K., Wang B., Ng T., Osborne R., Brew B., Saksena N. K. 2001; Varied tropism of HIV-1 isolates derived from different regions of adult brain cortex discriminate between patients with and without AIDS dementia complex (ADC): evidence for neurotropic HIV variants. Virology 279:509–526 [CrossRef]
    [Google Scholar]
  29. Strayer D. S., Lamothe M., Wei D., Milano J., Kondo R. 2001; Generation of recombinant SV40 vectors for gene transfer. Methods Mol Biol 165:103–117
    [Google Scholar]
  30. Strayer D. S., Mitchell C., Maier D. A., Nichols C. N. 2006; Papovaviruses: SV40. In Gene Transfer: Delivery and Expression of DNA and RNA, a Laboratory Manual . pp 273–287Edited by Friedmann T., Rossi. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  31. Sullivan P. S., Do A. N., Ellenberger D., Pau C. P., Paul S., Robbins K., Kalish M., Storck C., Schable C. A. other authors 2000; Human immunodeficiency virus (HIV) subtype surveillance of African-born persons at risk for group O and group N HIV infections in the United States. J Infect Dis 181:463–469 [CrossRef]
    [Google Scholar]
  32. Yu J. Y., DeRuiter S. L., Turner D. L. 2002; RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci U S A 99:6047–6052 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.006205-0
Loading
/content/journal/jgv/10.1099/vir.0.006205-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error