1887

Abstract

Dragonfly cyclovirus (DfCyV), a new species of ssDNA virus discovered using viral metagenomics in dragonflies (familyLibellulidae) from the Kingdom of Tonga. Metagenomic sequences of DfCyV were similar to viruses of the recently proposed genus Cyclovirus within the family. Specific PCRs resulted in the recovery of 21 DfCyV genomes from three dragonfly species (, and ). The 1741 nt DfCyV genomes share >95 % nucleotide identity and are classified into 11 subtypes representing a single strain. The DfCyV genomes share 48–63 % genome-wide nucleotide identity with cycloviruses identified in human faecal samples. Recombination analysis revealed three recombinant DfCyV genomes, suggesting that recombination plays an important role in cyclovirus evolution. To our knowledge, this is the first report of a circular ssDNA virus identified in insects, and the data may help elucidate evolutionary links among novel recently identified in animals and environmental samples.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.030338-0
2011-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/6/1302.html?itemId=/content/journal/jgv/10.1099/vir.0.030338-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J. H., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  2. Anderson R. C. 2009; Do dragonflies migrate across the western Indian Ocean?. J Trop Ecol 25:347–358 [View Article]
    [Google Scholar]
  3. Blinkova O., Victoria J., Li Y., Keele B. F., Sanz C., Ndjango J.-B. N., Peeters M., Travis D., Lonsdorf E. V. et al. 2010; Novel circular DNA viruses in stool samples of wild-living chimpanzees. J Gen Virol 91:74–86 [View Article][PubMed]
    [Google Scholar]
  4. Carstens E. B. 2010; Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2009). Arch Virol 155:133–146 [View Article][PubMed]
    [Google Scholar]
  5. Charpentier R. 1979; A nonoccluded virus in nymphs of the dragonfly Leucorrhinia dubia (Odonata, Anisoptera). J Invertebr Pathol 34:95–98 [View Article]
    [Google Scholar]
  6. Corbet P. S. 1999 Dragonflies: Behaviour and Ecology of Odonata Colchester, UK: Harley Books;
    [Google Scholar]
  7. Corbet P., Brooks S. 2008; Dragonflies. In New Naturalist Library London: Harper-Collins;
    [Google Scholar]
  8. Desbiez C., David C., Mettouchi A., Laufs J., Gronenborn B. 1995; Rep protein of tomato yellow leaf curl geminivirus has an ATPase activity required for viral DNA replication. Proc Natl Acad Sci U S A 92:5640–5644 [View Article][PubMed]
    [Google Scholar]
  9. Duffy S., Shackelton L. A., Holmes E. C. 2008; Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet 9:267–276 [View Article][PubMed]
    [Google Scholar]
  10. Fauquet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball L. A. 2005 Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses San Diego, CA: Academic Press;
    [Google Scholar]
  11. Guindon S. P., Gascuel O. 2003; A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704 [View Article][PubMed]
    [Google Scholar]
  12. Heath L., Williamson A. L., Rybicki E. P. 2006; The capsid protein of beak and feather disease virus binds to the viral DNA and is responsible for transporting the replication-associated protein into the nucleus. J Virol 80:7219–7225 [View Article][PubMed]
    [Google Scholar]
  13. Hogenhout S. A., Ammar D., Whitfield A. E., Redinbaugh M. G. 2008; Insect vector interactions with persistently transmitted viruses. Annu Rev Phytopathol 46:327–359 [View Article][PubMed]
    [Google Scholar]
  14. Ilyina T. V., Koonin E. V. 1992; Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria. Nucleic Acids Res 20:3279–3285 [View Article][PubMed]
    [Google Scholar]
  15. Kapoor A., Simmonds P., Lipkin W. I., Zaidi S., Delwart E. 2010; Use of nucleotide composition analysis to infer hosts for three novel picorna-like viruses. J Virol 84:10322–10328 [View Article][PubMed]
    [Google Scholar]
  16. Kim K. H., Chang H. W., Nam Y. D., Roh S. W., Kim M. S., Sung Y., Jeon C. O., Oh H. M., Bae J. W. 2008; Amplification of uncultured single-stranded DNA viruses from rice paddy soil. Appl Environ Microbiol 74:5975–5985 [View Article][PubMed]
    [Google Scholar]
  17. Lefeuvre P., Martin D. P., Hoareau M., Naze F., Delatte H., Thierry M., Varsani A., Becker N., Reynaud B., Lett J. M. 2007; Begomovirus ‘melting pot’ in the south-west Indian Ocean islands: molecular diversity and evolution through recombination. J Gen Virol 88:3458–3468 [View Article][PubMed]
    [Google Scholar]
  18. Lefeuvre P., Lett J. M., Varsani A., Martin D. P. 2009; Widely conserved recombination patterns among single-stranded DNA viruses. J Virol 83:2697–2707 [View Article][PubMed]
    [Google Scholar]
  19. Li L., Kapoor A., Slikas B., Bamidele O. S., Wang C., Shaukat S., Masroor M. A., Wilson M. L., Ndjango J.-B. N. et al. 2010a). Multiple diverse circoviruses infect farm animals and are commonly found in human and chimpanzee feces. J Virol 84:1674–1682 [View Article][PubMed]
    [Google Scholar]
  20. Li L., Victoria J. G., Wang C., Jones M., Fellers G. M., Kunz T. H., Delwart E. 2010b). Bat guano virome: predominance of dietary viruses from insects and plants plus novel mammalian viruses. J Virol 84:6955–6965 [View Article][PubMed]
    [Google Scholar]
  21. Liu Q. G., Tikoo S. K., Babiuk L. A. 2001; Nuclear localization of the ORF2 protein encoded by porcine circovirus type 2. Virology 285:91–99 [View Article][PubMed]
    [Google Scholar]
  22. López-Bueno A., Tamames J., Velázquez D., Moya A., Quesada A., Alcamí A. 2009; High diversity of the viral community from an Antarctic lake. Science 326:858–861 [View Article][PubMed]
    [Google Scholar]
  23. Martin D. P., Williamson C., Posada D. 2005; rdp2: recombination detection and analysis from sequence alignments. Bioinformatics 21:260–262 [View Article][PubMed]
    [Google Scholar]
  24. Meerts P., Misinzo G., McNeilly F., Nauwynck H. J. 2005; Replication kinetics of different porcine circovirus 2 strains in PK-15 cells, fetal cardiomyocytes and macrophages. Arch Virol 150:427–441 [View Article][PubMed]
    [Google Scholar]
  25. Rosario K., Duffy S., Breitbart M. 2009; Diverse circovirus-like genome architectures revealed by environmental metagenomics. J Gen Virol 90:2418–2424 [View Article][PubMed]
    [Google Scholar]
  26. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: Molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  27. Theischinger G., Hawking J. 2006 The Complete Field Guide to Dragonflies of Australia Collingwood: CSIRO;
    [Google Scholar]
  28. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  29. Todd D. 2000; Circoviruses: immunosuppressive threats to avian species: a review. Avian Pathol 29:373–394 [View Article][PubMed]
    [Google Scholar]
  30. Varsani A., Shepherd D. N., Monjane A. L., Owor B. E., Erdmann J. B., Rybicki E. P., Peterschmitt M., Briddon R. W., Markham P. G. et al. 2008; Recombination, decreased host specificity and increased mobility may have driven the emergence of maize streak virus as an agricultural pathogen. J Gen Virol 89:2063–2074 [View Article][PubMed]
    [Google Scholar]
  31. Varsani A., Regnard G. L., Bragg R. R., Hitzeroth I. I., Rybicki E. P. 2011; Global genetic diversity and geographical and host species distribution of beak and feather disease virus isolates. J Gen Virol 92:752–767[PubMed] [CrossRef]
    [Google Scholar]
  32. Walker J. E., Saraste M., Runswick M. J., Gay N. J. 1982; Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.030338-0
Loading
/content/journal/jgv/10.1099/vir.0.030338-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error