1887

Abstract

Broad cell tropism contributes to the pathogenesis of human cytomegalovirus (HCMV), but the extent to which cell type influences HCMV gene expression is unclear. A bespoke HCMV DNA microarray was used to monitor the transcriptome activity of the low passage Merlin strain of HCMV at 12, 24, 48 and 72 h post-infection, during a single round of replication in human fetal foreskin fibroblast cells (HFFF-2s), human retinal pigmented epithelial cells (RPE-1s) and human astrocytoma cells (U373MGs). In order to correlate transcriptome activity with concurrent biological responses, viral cytopathic effect, growth kinetics and genomic loads were examined in the three cell types. The temporal expression pattern of viral genes was broadly similar in HFFF-2s and RPE-1s, but dramatically different in U373MGs. Of the 165 known HCMV protein-coding genes, 41 and 48 were differentially regulated in RPE-1s and U373MGs, respectively, compared with HFFF-2s, and 22 of these were differentially regulated in both RPE-1s and U373MGs. In RPE-1s, all differentially regulated genes were downregulated, but, in U373MGs, some were down- and others upregulated. Differentially regulated genes were identified among the immediate-early, early, early late and true-late viral gene classes. Grouping of downregulated genes according to function at landmark stages of the replication cycle led to the identification of potential bottleneck stages (genome replication, virion assembly, and virion maturation and release) that may account for cell type-dependent viral growth kinetics. The possibility that cell type-specific differences in expressed cellular factors are responsible for modulation of viral gene expression is discussed.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.038083-0
2012-05-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/5/1046.html?itemId=/content/journal/jgv/10.1099/vir.0.038083-0&mimeType=html&fmt=ahah

References

  1. Adam B.-L., Jervey T. Y., Kohler C. P., Wright G. L. Jr, Nelson J. A., Stenberg R. M. 1995; The human cytomegalovirus UL98 gene transcription unit overlaps with the pp28 true late gene (UL99) and encodes a 58-kilodalton early protein. J Virol 69:5304–5310[PubMed]
    [Google Scholar]
  2. Aguilar J. S., Ghazal P., Wagner E. K. 2005; Design of a herpes simplex virus type 2 long oligonucleotide-based microarray: global analysis of HSV-2 transcript abundance during productive infection. Methods Mol Biol 292:423–448[PubMed]
    [Google Scholar]
  3. Alderete J. P., Child S. J., Geballe A. P. 2001; Abundant early expression of gpUL4 from a human cytomegalovirus mutant lacking a repressive upstream open reading frame. J Virol 75:7188–7192 [View Article][PubMed]
    [Google Scholar]
  4. Casavant N. C., Luo M. H., Rosenke K., Winegardner T., Zurawska A., Fortunato E. A. 2006; Potential role for p53 in the permissive life cycle of human cytomegalovirus. J Virol 80:8390–8401 [View Article][PubMed]
    [Google Scholar]
  5. Chambers J., Angulo A., Amaratunga D., Guo H., Jiang Y., Wan J. S., Bittner A., Frueh K., Jackson M. R. other authors 1999; DNA microarrays of the complex human cytomegalovirus genome: profiling kinetic class with drug sensitivity of viral gene expression. J Virol 73:5757–5766[PubMed]
    [Google Scholar]
  6. Chee M. S., Bankier A. T., Beck S., Bohni R., Brown C. M., Cerny R., Horsnell T., Hutchison C. A. III, Kouzarides T. other authors 1990; Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr Top Microbiol Immunol 154:125–169 [View Article][PubMed]
    [Google Scholar]
  7. Chen J., Stinski M. F. 2000; Activation of transcription of the human cytomegalovirus early UL4 promoter by the Ets transcription factor binding element. J Virol 74:9845–9857 [View Article][PubMed]
    [Google Scholar]
  8. Cinatl J. Jr, Blaheta R., Bittoova M., Scholz M., Margraf S., Vogel J.-U., Cinatl J., Doerr H. W. 2000; Decreased neutrophil adhesion to human cytomegalovirus-infected retinal pigment epithelial cells is mediated by virus-induced up-regulation of Fas ligand independent of neutrophil apoptosis. J Immunol 165:4405–4413[PubMed] [CrossRef]
    [Google Scholar]
  9. Cinatl J. Jr, Margraf S., Vogel J.-U., Scholz M., Cinatl J., Doerr H. W. 2001; Human cytomegalovirus circumvents NF-κB dependence in retinal pigment epithelial cells. J Immunol 167:1900–1908[PubMed] [CrossRef]
    [Google Scholar]
  10. Dal Monte P., Bessia C., Ripalti A., Landini M. P., Topilko A., Plachter B., Virelizier J. L., Michelson S. 1996; Stably expressed antisense RNA to cytomegalovirus UL83 inhibits viral replication. J Virol 70:2086–2094[PubMed]
    [Google Scholar]
  11. Dargan D. J., Douglas E., Cunningham C., Jamieson F., Stanton R. J., Baluchova K., McSharry B. P., Tomasec P., Emery V. C. other authors 2010; Sequential mutations associated with adaptation of human cytomegalovirus to growth in cell culture. J Gen Virol 91:1535–1546 [View Article][PubMed]
    [Google Scholar]
  12. Davison A. J., Bhella D. 2007; Comparative genome and virion structure. In Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis pp. 177–203 Edited by Arvin A., Campadelli-Fiume G., Mocarski E., Moore P. S., Roizman B., Whitley R., Yamanishi K. Cambridge, UK: Cambridge University Press;
    [Google Scholar]
  13. Davison A. J., Dolan A., Akter P., Addison C., Dargan D. J., Alcendor D. J., McGeoch D. J., Hayward G. S. 2003; The human cytomegalovirus genome revisited: comparison with the chimpanzee cytomegalovirus genome. J Gen Virol 84:17–28 [View Article][PubMed]
    [Google Scholar]
  14. Deb S., Jackson C. T., Subler M. A., Martin D. W. 1992; Modulation of cellular and viral promoters by mutant human p53 proteins found in tumor cells. J Virol 66:6164–6170[PubMed]
    [Google Scholar]
  15. Detrick B., Rhame J., Wang Y., Nagineni C. N., Hooks J. J. 1996; Cytomegalovirus replication in human retinal pigment epithelial cells. Altered expression of viral early proteins. Invest Ophthalmol Vis Sci 37:814–825[PubMed]
    [Google Scholar]
  16. Dolan A., Cunningham C., Hector R. D., Hassan-Walker A. F., Lee L., Addison C., Dargan D. J., McGeoch D. J., Gatherer D. other authors 2004; Genetic content of wild-type human cytomegalovirus. J Gen Virol 85:1301–1312 [View Article][PubMed]
    [Google Scholar]
  17. Ebrahimi B., Dutia B. M., Roberts K. L., Garcia-Ramirez J. J., Dickinson P., Stewart J. P., Ghazal P., Roy D. J., Nash A. A. 2003; Transcriptome profile of murine gammaherpesvirus-68 lytic infection. J Gen Virol 84:99–109 [View Article][PubMed]
    [Google Scholar]
  18. Eickhoff J. E., Cotten M. 2005; NF-κB activation can mediate inhibition of human cytomegalovirus replication. J Gen Virol 86:285–295 [View Article][PubMed]
    [Google Scholar]
  19. Fortunato E. A., Spector D. H. 1998; p53 and RPA are sequestered in viral replication centers in the nuclei of cells infected with human cytomegalovirus. J Virol 72:2033–2039[PubMed]
    [Google Scholar]
  20. Gatherer D., Seirafian S., Cunningham C., Holton M., Dargan D. J., Baluchova K., Hector R. D., Galbraith J., Herzyk P. other authors 2011; High-resolution human cytomegalovirus transcriptome. Proc Natl Acad Sci U S A 108:19755–19760 [View Article][PubMed]
    [Google Scholar]
  21. Grey F., Nelson J. 2008; Identification and function of human cytomegalovirus microRNAs. J Clin Virol 41:186–191 [View Article][PubMed]
    [Google Scholar]
  22. Hannemann H., Rosenke K., O’Dowd J. M., Fortunato E. A. 2009; The presence of p53 influences the expression of multiple human cytomegalovirus genes at early times postinfection. J Virol 83:4316–4325 [View Article][PubMed]
    [Google Scholar]
  23. Holtkamp G. M., Kijlstra A., Peek R., de Vos A. F. 2001; Retinal pigment epithelium-immune system interactions: cytokine production and cytokine-induced changes. Prog Retin Eye Res 20:29–48 [View Article][PubMed]
    [Google Scholar]
  24. Isomura H., Stinski M. F., Kudoh A., Nakayama S., Iwahori S., Sato Y., Tsurumi T. 2007; The late promoter of the human cytomegalovirus viral DNA polymerase processivity factor has an impact on delayed early and late viral gene products but not on viral DNA synthesis. J Virol 81:6197–6206 [View Article][PubMed]
    [Google Scholar]
  25. Jenner R. G., Albà M. M., Boshoff C., Kellam P. 2001; Kaposi’s sarcoma-associated herpesvirus latent and lytic gene expression as revealed by DNA arrays. J Virol 75:891–902 [View Article][PubMed]
    [Google Scholar]
  26. Kari B., Radeke R., Gehrz R. 1992; Processing of human cytomegalovirus envelope glycoproteins in and egress of cytomegalovirus from human astrocytoma cells. J Gen Virol 73:253–260 [View Article][PubMed]
    [Google Scholar]
  27. Kennedy P. G. E., Grinfeld E., Craigon M., Vierlinger K., Roy D., Forster T., Ghazal P. 2005; Transcriptomal analysis of varicella-zoster virus infection using long oligonucleotide-based microarrays. J Gen Virol 86:2673–2684 [View Article][PubMed]
    [Google Scholar]
  28. Kerry J. A., Priddy M. A., Jervey T. Y., Kohler C. P., Staley T. L., Vanson C. D., Jones T. R., Iskenderian A. C., Anders D. G., Stenberg R. M. 1996; Multiple regulatory events influence human cytomegalovirus DNA polymerase (UL54) expression during viral infection. J Virol 70:373–382[PubMed]
    [Google Scholar]
  29. Kerry J. A., Priddy M. A., Staley T. L., Jones T. R., Stenberg R. M. 1997; The role of ATF in regulating the human cytomegalovirus DNA polymerase (UL54) promoter during viral infection. J Virol 71:2120–2126[PubMed]
    [Google Scholar]
  30. Kondo K., Kaneshima H., Mocarski E. S. 1994; Human cytomegalovirus latent infection of granulocyte-macrophage progenitors. Proc Natl Acad Sci U S A 91:11879–11883 [View Article][PubMed]
    [Google Scholar]
  31. Li C., Chen R.-S., Hung S.-K., Lee Y.-T., Yen C.-Y., Lai Y.-W., Teng R.-H., Huang J.-Y., Tang Y.-C. other authors 2006; Detection of Epstein–Barr virus infection and gene expression in human tumors by microarray analysis. J Virol Methods 133:158–166 [View Article][PubMed]
    [Google Scholar]
  32. Miceli M. V., Newsome D. A., Novak L. C., Beuerman R. W. 1989; Cytomegalovirus replication in cultured human retinal pigment epithelial cells. Curr Eye Res 8:835–839 [View Article][PubMed]
    [Google Scholar]
  33. Ohyashiki J. H., Takaku T., Ojima T., Abe K., Yamamoto K., Zhang Y., Ohyashiki K. 2005; Transcriptional profiling of human herpesvirus type B (HHV-6B) in an adult T cell leukemia cell line as in vitro model for persistent infection. Biochem Biophys Res Commun 329:11–17 [View Article][PubMed]
    [Google Scholar]
  34. Poland S. D., Costello P., Dekaban G. A., Rice G. P. A. 1990; Cytomegalovirus in the brain: in vitro infection of human brain-derived cells. J Infect Dis 162:1252–1262 [View Article][PubMed]
    [Google Scholar]
  35. Rodems S. M., Clark C. L., Spector D. H. 1998; Separate DNA elements containing ATF/CREB and IE86 binding sites differentially regulate the human cytomegalovirus UL112-113 promoter at early and late times in the infection. J Virol 72:2697–2707[PubMed]
    [Google Scholar]
  36. Romanowski M. J., Shenk T. 1997; Characterization of the human cytomegalovirus irs1 and trs1 genes: a second immediate-early transcription unit within irs1 whose product antagonizes transcriptional activation. J Virol 71:1485–1496[PubMed]
    [Google Scholar]
  37. Rosenke K., Samuel M. A., McDowell E. T., Toerne M. A., Fortunato E. A. 2006; An intact sequence-specific DNA-binding domain is required for human cytomegalovirus-mediated sequestration of p53 and may promote in vivo binding to the viral genome during infection. Virology 348:19–34 [View Article][PubMed]
    [Google Scholar]
  38. Scholz M., Doerr H. W., Cinatl J. 2003; Human cytomegalovirus retinitis: pathogenicity, immune evasion and persistence. Trends Microbiol 11:171–178 [View Article][PubMed]
    [Google Scholar]
  39. Schröer J., Shenk T. 2008; Inhibition of cyclooxygenase activity blocks cell-to-cell spread of human cytomegalovirus. Proc Natl Acad Sci U S A 105:19468–19473 [View Article][PubMed]
    [Google Scholar]
  40. Sinzger C., Grefte A., Plachter B., Gouw A. S. H., The T. H., Jahn G. 1995; Fibroblasts, epithelial cells, endothelial cells and smooth muscle cells are major targets of human cytomegalovirus infection in lung and gastrointestinal tissues. J Gen Virol 76:741–750 [View Article][PubMed]
    [Google Scholar]
  41. Stanton R. J., Baluchova K., Dargan D. J., Cunningham C., Sheehy O., Seirafian S., McSharry B. P., Neale M. L., Davies J. A. other authors 2010; Reconstruction of the complete human cytomegalovirus genome in a BAC reveals RL13 to be a potent inhibitor of replication. J Clin Invest 120:3191–3208 [View Article][PubMed]
    [Google Scholar]
  42. Stern-Ginossar N., Elefant N., Zimmermann A., Wolf D. G., Saleh N., Biton M., Horwitz E., Prokocimer Z., Prichard M. other authors 2007; Host immune system gene targeting by a viral miRNA. Science 317:376–381 [View Article][PubMed]
    [Google Scholar]
  43. Stingley S. W., Ramirez J. J., Aguilar S. A., Simmen K., Sandri-Goldin R. M., Ghazal P., Wagner E. K. 2000; Global analysis of herpes simplex virus type 1 transcription using an oligonucleotide-based DNA microarray. J Virol 74:9916–9927 [View Article][PubMed]
    [Google Scholar]
  44. Stinski M. F., Meier J. L. 2007; Immediate-early viral gene regulation and function. In Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis pp. 241–263 Edited by Arvin A., Campadelli-Fiume G., Mocarski E., Moore P. S., Roizman B., Whitley R., Yamanishi K. Cambridge, UK: Cambridge University Press;
    [Google Scholar]
  45. Tang Q., Murphy E. A., Maul G. G. 2006; Experimental confirmation of global murine cytomegalovirus open reading frames by transcriptional detection and partial characterization of newly described gene products. J Virol 80:6873–6882 [View Article][PubMed]
    [Google Scholar]
  46. Tsao E. H., Kellam P., Sin C. S. Y., Rasaiyaah J., Griffiths P. D., Clark D. A. 2009; Microarray-based determination of the lytic cascade of human herpesvirus 6B. J Gen Virol 90:2581–2591 [View Article][PubMed]
    [Google Scholar]
  47. Van Meir E. G., Kikuchi T., Tada M., Li H., Diserens A.-C., Wojcik B. E., Huang H.-J., Friedmann T., de Tribolet N., Cavenee W. K. 1994; Analysis of the p53 gene and its expression in human glioblastoma cells. Cancer Res 54:649–652[PubMed]
    [Google Scholar]
  48. Wang W., Yu P., Zhang P., Shi Y., Bu H., Zhang L. 2008; The infection of human primary cells and cell lines by human cytomegalovirus: new tropism and new reservoirs for HCMV. Virus Res 131:160–169 [View Article][PubMed]
    [Google Scholar]
  49. Wing B. A., Huang E.-S. 1995; Analysis and mapping of a family of 3′-coterminal transcripts containing coding sequences for human cytomegalovirus open reading frames UL93 through UL99. J Virol 69:1521–1531[PubMed]
    [Google Scholar]
  50. Wing B. A., Johnson R. A., Huang E.-S. 1998; Identification of positive and negative regulatory regions involved in regulating expression of the human cytomegalovirus UL94 late promoter: role of IE2-86 and cellular p53 in mediating negative regulatory function. J Virol 72:1814–1825[PubMed]
    [Google Scholar]
  51. Yang S., Ghanny S., Wang W., Galante A., Dunn W., Liu F., Soteropoulos P., Zhu H. 2006; Using DNA microarray to study human cytomegalovirus gene expression. J Virol Methods 131:202–208 [View Article][PubMed]
    [Google Scholar]
  52. Zhang G., Raghavan B., Kotur M., Cheatham J., Sedmak D., Cook C., Waldman J., Trgovcich J. 2007; Antisense transcription in the human cytomegalovirus transcriptome. J Virol 81:11267–11281 [View Article][PubMed]
    [Google Scholar]
  53. Zhu H., Cong J.-P., Yu D., Bresnahan W. A., Shenk T. E. 2002; Inhibition of cyclooxygenase 2 blocks human cytomegalovirus replication. Proc Natl Acad Sci U S A 99:3932–3937 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.038083-0
Loading
/content/journal/jgv/10.1099/vir.0.038083-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error