1887

Abstract

Foot-and-mouth disease virus (FMDV) is one of the most extensively studied animal pathogens because it remains a major threat to livestock economies worldwide. However, the dynamics of FMDV infection are still poorly understood. The application of reverse genetics provides the opportunity to generate molecular tools to further dissect the FMDV life cycle. Here, we have used reverse genetics to determine the capsid packaging limitations for a selected insertion site in the FMDV genome. We show that exogenous RNA up to a defined length can be stably introduced into the FMDV genome, whereas larger insertions are excised by recombination events. This led us to construct a recombinant FMDV expressing the fluorescent marker protein, termed iLOV. Characterization of infectious iLOV-FMDV showed the virus has a plaque morphology and rate of growth similar to the parental virus. In addition, we show that cells infected with iLOV-FMDV are easily differentiated by flow cytometry using the inherent fluorescence of iLOV and that cells infected with iLOV-FMDV can be monitored in real-time with fluorescence microscopy. iLOV-FMDV therefore offers a unique tool to characterize FMDV infection , and its applications for studies are discussed.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.052308-0
2013-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/7/1517.html?itemId=/content/journal/jgv/10.1099/vir.0.052308-0&mimeType=html&fmt=ahah

References

  1. Agol V. I. 1997; Recombination and other genomic rearrangements in picornaviruses. Semin Virol 8:77–84 [View Article]
    [Google Scholar]
  2. Andino R., Silvera D., Suggett S. D., Achacoso P. L., Miller C. J., Baltimore D., Feinberg M. B. 1994; Engineering poliovirus as a vaccine vector for the expression of diverse antigens. Science 265:1448–1451 [View Article][PubMed]
    [Google Scholar]
  3. Bøtner A., Kakker N. K., Barbezange C., Berryman S., Jackson T., Belsham G. J. 2011; Capsid proteins from field strains of foot-and-mouth disease virus confer a pathogenic phenotype in cattle on an attenuated, cell-culture-adapted virus. J Gen Virol 92:1141–1151 [View Article][PubMed]
    [Google Scholar]
  4. Brehm K. E., Ferris N. P., Lenk M., Riebe R., Haas B. 2009; Highly sensitive fetal goat tongue cell line for detection and isolation of foot-and-mouth disease virus. J Clin Microbiol 47:3156–3160 [View Article][PubMed]
    [Google Scholar]
  5. Chapman S., Faulkner C., Kaiserli E., Garcia-Mata C., Savenkov E. I., Roberts A. G., Oparka K. J., Christie J. M. 2008; The photoreversible fluorescent protein iLOV outperforms GFP as a reporter of plant virus infection. Proc Natl Acad Sci U S A 105:20038–20043 [View Article][PubMed]
    [Google Scholar]
  6. Cook J. K., Jones B. V., Ellis M. M., Jing L., Cavanagh D. 1993; Antigenic differentiation of strains of turkey rhinotracheitis virus using monoclonal antibodies. Avian Patho. 22:257–273 [CrossRef]
    [Google Scholar]
  7. Cubitt A. B., Heim R., Adams S. R., Boyd A. E., Gross L. A., Tsien R. Y. 1995; Understanding, improving and using green fluorescent proteins. Trends Biochem Sci 20:448–455 [View Article][PubMed]
    [Google Scholar]
  8. De Diego M., Brocchi E., Mackay D., De Simone F. 1997; The non-structural polyprotein 3ABC of foot-and-mouth disease virus as a diagnostic antigen in ELISA to differentiate infected from vaccinated cattle. Arch Virol 142:2021–2033 [View Article][PubMed]
    [Google Scholar]
  9. De Palma A. M., Vliegen I., De Clercq E., Neyts J. 2008; Selective inhibitors of picornavirus replication. Med Res Rev 28:823–884 [View Article][PubMed]
    [Google Scholar]
  10. Fernández F. M., Borca M. V., Sadir A. M., Fondevila N., Mayo J., Schudel A. A. 1986; Foot-and-mouth disease virus (FMDV) experimental infection: susceptibility and immune response of adult mice. Vet Microbiol 12:15–24 [View Article][PubMed]
    [Google Scholar]
  11. Forss S., Strebel K., Beck E., Schaller H. 1984; Nucleotide sequence and genome organization of foot-and-mouth disease virus. Nucleic Acids Res 12:6587–6601 [View Article][PubMed]
    [Google Scholar]
  12. García-Briones M., Rosas M. F., González-Magaldi M., Martín-Acebes M. A., Sobrino F., Armas-Portela R. 2006; Differential distribution of non-structural proteins of foot-and-mouth disease virus in BHK-21 cells. Virology 349:409–421 [View Article][PubMed]
    [Google Scholar]
  13. Jackson T., Sheppard D., Denyer M., Blakemore W., King A. M. 2000; The epithelial integrin alphavbeta6 is a receptor for foot-and-mouth disease virus. J Virol 74:4949–4956 [View Article][PubMed]
    [Google Scholar]
  14. Juleff N., Windsor M., Reid E., Seago J., Zhang Z., Monaghan P., Morrison I. W., Charleston B. 2008; Foot-and-mouth disease virus persists in the light zone of germinal centres. PLoS ONE 3:e3434 [View Article][PubMed]
    [Google Scholar]
  15. Lu H. H., Wimmer E. 1996; Poliovirus chimeras replicating under the translational control of genetic elements of hepatitis C virus reveal unusual properties of the internal ribosomal entry site of hepatitis C virus. Proc Natl Acad Sci U S A 93:1412–1417 [View Article][PubMed]
    [Google Scholar]
  16. Lu H. H., Alexander L., Wimmer E. 1995; Construction and genetic analysis of dicistronic polioviruses containing open reading frames for epitopes of human immunodeficiency virus type 1 gp120. J Virol 69:4797–4806[PubMed]
    [Google Scholar]
  17. Lukashev A. N. 2010; Recombination among picornaviruses. Rev Med Virol 20:327–337 [View Article][PubMed]
    [Google Scholar]
  18. Manicassamy B., Manicassamy S., Belicha-Villanueva A., Pisanelli G., Pulendran B., García-Sastre A. 2010; Analysis of in vivo dynamics of influenza virus infection in mice using a GFP reporter virus. Proc Natl Acad Sci U S A 107:11531–11536 [View Article][PubMed]
    [Google Scholar]
  19. Mattion N. M., Reilly P. A., DiMichele S. J., Crowley J. C., Weeks-Levy C. 1994; Attenuated poliovirus strain as a live vector: expression of regions of rotavirus outer capsid protein VP7 by using recombinant Sabin 3 viruses. J Virol 68:3925–3933[PubMed]
    [Google Scholar]
  20. Mattion N. M., Reilly P. A., Camposano E., Wu S. L., DiMichele S. J., Ishizaka S. T., Fantini S. E., Crowley J. C., Weeks-Levy C. 1995; Characterization of recombinant polioviruses expressing regions of rotavirus VP4, hepatitis B surface antigen, and herpes simplex virus type 2 glycoprotein D. J Virol 69:5132–5137[PubMed]
    [Google Scholar]
  21. Mueller S., Wimmer E. 1998; Expression of foreign proteins by poliovirus polyprotein fusion: analysis of genetic stability reveals rapid deletions and formation of cardioviruslike open reading frames. J Virol 72:20–31[PubMed]
    [Google Scholar]
  22. Ormö M., Cubitt A. B., Kallio K., Gross L. A., Tsien R. Y., Remington S. J. 1996; Crystal structure of the Aequorea victoria green fluorescent protein. Science 273:1392–1395 [View Article][PubMed]
    [Google Scholar]
  23. Reid E., Juleff N., Gubbins S., Prentice H., Seago J., Charleston B. 2011; Bovine plasmacytoid dendritic cells are the major source of type I interferon in response to foot-and-mouth disease virus in vitro and in vivo. J Virol 85:4297–4308 [View Article][PubMed]
    [Google Scholar]
  24. Rott R., Siddell S. 1998; One hundred years of animal virology. J Gen Virol 79:2871–2874[PubMed]
    [Google Scholar]
  25. Rueckert R. R. 1996; Picornaviridae: the viruses and their replication. In Fields Virology, 3rd edn. pp. 609–654 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia: Lippincott-Raven;
    [Google Scholar]
  26. Salguero F. J., Sánchez-Martín M. A., Díaz-San Segundo F., de Avila A., Sevilla N. 2005; Foot-and-mouth disease virus (FMDV) causes an acute disease that can be lethal for adult laboratory mice. Virology 332:384–396 [View Article][PubMed]
    [Google Scholar]
  27. Sánchez-Puig J. M., Sánchez L., Roy G., Blasco R. 2004; Susceptibility of different leukocyte cell types to Vaccinia virus infection. Virol J 1:10 [View Article][PubMed]
    [Google Scholar]
  28. Savolainen-Kopra C., Blomqvist S. 2010; Mechanisms of genetic variation in polioviruses. Rev Med Virol 20:358–371 [View Article][PubMed]
    [Google Scholar]
  29. Seago J., Jackson T., Doel C., Fry E., Stuart D., Harmsen M. M., Charleston B., Juleff N. 2012; Characterization of epitope-tagged foot-and-mouth disease virus. J Gen Virol 93:2371–2381 [View Article][PubMed]
    [Google Scholar]
  30. Shaner N. C., Steinbach P. A., Tsien R. Y. 2005; A guide to choosing fluorescent proteins. Nat Methods 2:905–909 [View Article][PubMed]
    [Google Scholar]
  31. Tsien R. Y. 1998; The green fluorescent protein. Annu Rev Biochem 67:509–544 [View Article][PubMed]
    [Google Scholar]
  32. Wright K. M., Wood N. T., Roberts A. G., Chapman S., Boevink P., Mackenzie K. M., Oparka K. J. 2007; Targeting of TMV movement protein to plasmodesmata requires the actin/ER network: evidence from FRAP. Traffic 8:21–31 [View Article][PubMed]
    [Google Scholar]
  33. Yang F., Moss L. G., Phillips G. N. Jr 1996; The molecular structure of green fluorescent protein. Nat Biotechnol 14:1246–1251 [View Article][PubMed]
    [Google Scholar]
  34. Yim T. J., Tang S., Andino R. 1996; Poliovirus recombinants expressing hepatitis B virus antigens elicited a humoral immune response in susceptible mice. Virology 218:61–70 [View Article][PubMed]
    [Google Scholar]
  35. Zhou J. H., Gao Z. L., Zhang J., Ding Y. Z., Stipkovits L., Szathmary S., Pejsak Z., Liu Y. S. 2013; The analysis of codon bias of foot-and-mouth disease virus and the adaptation of this virus to the hosts. Infect Genet Evol 14:105–110 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.052308-0
Loading
/content/journal/jgv/10.1099/vir.0.052308-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error