1887

Abstract

The triple-layered rotavirus virion encases an 11-segmented, dsRNA genome and 11–12 copies of the viral polymerase (VP1). VP1 transcribes and replicates the genome while tethered beneath the VP2 core shell. Genome replication (i.e. minus-strand RNA synthesis) by VP1 occurs in association with core assembly. During this process, VP2 directly engages VP1, thereby (i) packaging the polymerase into a nascent core and (ii) triggering the enzyme to initiate minus-strand RNA synthesis on bound plus-strand RNA templates. Recent work has shed light on VP2 regions important for VP1 enzymic activity. In the current study, we sought to investigate VP2 subdomains involved in the encapsidation of VP1 into recombinant virus-like particles (VLPs), which are formed of VP2 and the middle layer virion protein (VP6). We showed that strain SA11 VLPs efficiently encapsidated SA11 VP1, but not the genetically divergent Bristol VP1. VLPs made with an SA11 VP2 mutant lacking residues 1–10 of the amino-terminal domain (NTD) were still able to encapsidate VP1; however, removal of the entire NTD (residues 1–102) completely abolished polymerase packaging. We also showed that a chimeric VP2 protein containing the NTD and dimer-forming subdomain of strain Bristol VP2 can efficiently encapsidate SA11 VP1. These results suggest that the VP2 NTD and dimer-forming subdomain play important, albeit non-specific, roles in both VP1 packaging and activation. When combined with previous work, the results of this study support the notion that the same VP2 regions that engage VP1 during activation are also involved in packaging the enzyme into the core.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.052951-0
2013-08-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/8/1818.html?itemId=/content/journal/jgv/10.1099/vir.0.052951-0&mimeType=html&fmt=ahah

References

  1. Bican P., Cohen J., Charpilienne A., Scherrer R. 1982; Purification and characterization of bovine rotavirus cores. J Virol 43:1113–1117[PubMed]
    [Google Scholar]
  2. Crawford S. E., Labbé M., Cohen J., Burroughs M. H., Zhou Y. J., Estes M. K. 1994; Characterization of virus-like particles produced by the expression of rotavirus capsid proteins in insect cells. J Virol 68:5945–5952[PubMed]
    [Google Scholar]
  3. Estes M. K., Kapikian A. Z. 2007; Rotaviruses. In Fields Virology, 2nd edn. vol. 2 pp. 1917–1974 Edited by Knipe D. M., Howley D. M. Philadelphia: Lippincott Williams and Wilkins;
    [Google Scholar]
  4. Estrozi L. F., Settembre E. C., Goret G., McClain B., Zhang X., Chen J. Z., Grigorieff N., Harrison S. C. 2013; Location of the dsRNA-dependent polymerase, VP1, in rotavirus particles. J Mol Biol 425:124–132 [View Article][PubMed]
    [Google Scholar]
  5. Guglielmi K. M., McDonald S. M., Patton J. T. 2010; Mechanism of intraparticle synthesis of the rotavirus double-stranded RNA genome. J Biol Chem 285:18123–18128 [View Article][PubMed]
    [Google Scholar]
  6. Jayaram H., Estes M. K., Prasad B. V. 2004; Emerging themes in rotavirus cell entry, genome organization, transcription and replication. Virus Res 101:67–81 [View Article][PubMed]
    [Google Scholar]
  7. Labbé M., Baudoux P., Charpilienne A., Poncet D., Cohen J. 1994; Identification of the nucleic acid binding domain of the rotavirus VP2 protein. J Gen Virol 75:3423–3430 [View Article][PubMed]
    [Google Scholar]
  8. Lawton J. A., Estes M. K., Prasad B. V. 1997a; Three-dimensional visualization of mRNA release from actively transcribing rotavirus particles. Nat Struct Biol 4:118–121 [View Article][PubMed]
    [Google Scholar]
  9. Lawton J. A., Zeng C. Q., Mukherjee S. K., Cohen J., Estes M. K., Prasad B. V. 1997b; Three-dimensional structural analysis of recombinant rotavirus-like particles with intact and amino-terminal-deleted VP2: implications for the architecture of the VP2 capsid layer. J Virol 71:7353–7360[PubMed]
    [Google Scholar]
  10. Li Z., Baker M. L., Jiang W., Estes M. K., Prasad B. V. 2009; Rotavirus architecture at subnanometer resolution. J Virol 83:1754–1766 [View Article][PubMed]
    [Google Scholar]
  11. McClain B., Settembre E., Temple B. R., Bellamy A. R., Harrison S. C. 2010; X-ray crystal structure of the rotavirus inner capsid particle at 3.8 A resolution. J Mol Biol 397:587–599 [View Article][PubMed]
    [Google Scholar]
  12. McDonald S. M., Patton J. T. 2011a; Assortment and packaging of the segmented rotavirus genome. Trends Microbiol 19:136–144 [View Article][PubMed]
    [Google Scholar]
  13. McDonald S. M., Patton J. T. 2011b; Rotavirus VP2 core shell regions critical for viral polymerase activation. J Virol 85:3095–3105 [View Article][PubMed]
    [Google Scholar]
  14. McDonald S. M., Aguayo D., Gonzalez-Nilo F. D., Patton J. T. 2009; Shared and group-specific features of the rotavirus RNA polymerase reveal potential determinants of gene reassortment restriction. J Virol 83:6135–6148 [View Article][PubMed]
    [Google Scholar]
  15. Parashar U. D., Burton A., Lanata C., Boschi-Pinto C., Shibuya K., Steele D., Birmingham M., Glass R. I. 2009; Global mortality associated with rotavirus disease among children in 2004. J Infect Dis 200:Suppl 1)S9–S15 [View Article][PubMed]
    [Google Scholar]
  16. Patton J. T., Spencer E. 2000; Genome replication and packaging of segmented double-stranded RNA viruses. Virology 277:217–225 [View Article][PubMed]
    [Google Scholar]
  17. Patton J. T., Jones M. T., Kalbach A. N., He Y. W., Xiaobo J. 1997; Rotavirus RNA polymerase requires the core shell protein to synthesize the double-stranded RNA genome. J Virol 71:9618–9626[PubMed]
    [Google Scholar]
  18. Pesavento J. B., Crawford S. E., Estes M. K., Prasad B. V. 2006; Rotavirus proteins: structure and assembly. Curr Top Microbiol Immunol 309:189–219 [View Article][PubMed]
    [Google Scholar]
  19. Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C., Ferrin T. E. 2004; UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612 [View Article][PubMed]
    [Google Scholar]
  20. Prasad B. V., Rothnagel R., Zeng C. Q., Jakana J., Lawton J. A., Chiu W., Estes M. K. 1996; Visualization of ordered genomic RNA and localization of transcriptional complexes in rotavirus. Nature 382:471–473 [View Article][PubMed]
    [Google Scholar]
  21. Rice P., Longden I., Bleasby A. 2000; EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16:276–277 [View Article][PubMed]
    [Google Scholar]
  22. Settembre E. C., Chen J. Z., Dormitzer P. R., Grigorieff N., Harrison S. C. 2011; Atomic model of an infectious rotavirus particle. EMBO J 30:408–416 [View Article][PubMed]
    [Google Scholar]
  23. Tortorici M. A., Broering T. J., Nibert M. L., Patton J. T. 2003; Template recognition and formation of initiation complexes by the replicase of a segmented double-stranded RNA virus. J Biol Chem 278:32673–32682 [View Article][PubMed]
    [Google Scholar]
  24. Zeng C. Q., Wentz M. J., Cohen J., Estes M. K., Ramig R. F. 1996; Characterization and replicase activity of double-layered and single-layered rotavirus-like particles expressed from baculovirus recombinants. J Virol 70:2736–2742[PubMed]
    [Google Scholar]
  25. Zeng C. Q., Estes M. K., Charpilienne A., Cohen J. 1998; The N terminus of rotavirus VP2 is necessary for encapsidation of VP1 and VP3. J Virol 72:201–208[PubMed]
    [Google Scholar]
  26. Zhang X., Settembre E., Xu C., Dormitzer P. R., Bellamy R., Harrison S. C., Grigorieff N. 2008; Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction. Proc Natl Acad Sci U S A 105:1867–1872 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.052951-0
Loading
/content/journal/jgv/10.1099/vir.0.052951-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error