1887

Abstract

In recent years, novel henipavirus-related sequences have been identified in bats in Africa. To evaluate the potential of African bat henipaviruses to spread in non-bat mammalian cells, we compared the biological functions of the surface glycoproteins G and F of the prototype African henipavirus GH-M74a with those of the glycoproteins of Nipah virus (NiV), a well-characterized pathogenic member of the henipavirus genus. Glycoproteins are central determinants for virus tropism, as efficient binding of henipavirus G proteins to cellular ephrin receptors and functional expression of fusion-competent F proteins are indispensable prerequisites for virus entry and cell-to-cell spread. In this study, we analysed the ability of the GH-M74a G and F proteins to cause cell-to-cell fusion in mammalian cell types readily permissive to NiV or Hendra virus infections. Except for limited syncytium formation in a bat cell line derived from , HypNi/1.1 cells, we did not observe any fusion. The highly restricted fusion activity was predominantly due to the F protein. Whilst GH-M74a G protein was found to interact with the main henipavirus receptor ephrin-B2 and induced syncytia upon co-expression with heterotypic NiV F protein, GH-M74a F protein did not cause evident fusion in the presence of heterotypic NiV G protein. Pulse–chase and surface biotinylation analyses revealed delayed F cleavage kinetics with a reduced expression of cleaved and fusion-active GH-M74a F protein on the cell surface. Thus, the F protein of GH-M74a showed a functional defect that is most likely caused by impaired trafficking leading to less efficient proteolytic activation and surface expression.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.060632-0
2014-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/3/539.html?itemId=/content/journal/jgv/10.1099/vir.0.060632-0&mimeType=html&fmt=ahah

References

  1. Aguilar H. C., Aspericueta V., Robinson L. R., Aanensen K. E., Lee B. 2010; A quantitative and kinetic fusion protein-triggering assay can discern distinct steps in the nipah virus membrane fusion cascade. J Virol 84:8033–8041 [View Article][PubMed]
    [Google Scholar]
  2. Biesold S. E., Ritz D., Gloza-Rausch F., Wollny R., Drexler J. F., Corman V. M., Kalko E. K., Oppong S., Drosten C., Müller M. A. 2011; Type I interferon reaction to viral infection in interferon-competent, immortalized cell lines from the African fruit bat Eidolon helvum . PLoS ONE 6:e28131 [View Article][PubMed]
    [Google Scholar]
  3. Bonaparte M. I., Dimitrov A. S., Bossart K. N., Crameri G., Mungall B. A., Bishop K. A., Choudhry V., Dimitrov D. S., Wang L. F.other authors 2005; Ephrin-B2 ligand is a functional receptor for Hendra virus and Nipah virus. Proc Natl Acad Sci U S A 102:10652–10657 [View Article][PubMed]
    [Google Scholar]
  4. Bossart K. N., Wang L. F., Flora M. N., Chua K. B., Lam S. K., Eaton B. T., Broder C. C. 2002; Membrane fusion tropism and heterotypic functional activities of the Nipah virus and Hendra virus envelope glycoproteins. J Virol 76:11186–11198 [View Article][PubMed]
    [Google Scholar]
  5. Chong H. T., Abdullah S., Chong T. T. 2009; Nipah virus and bats. Neurology Asia 14:73–76 [View Article]
    [Google Scholar]
  6. Chua K. B., Goh K. J., Wong K. T., Kamarulzaman A., Tan P. S., Ksiazek T. G., Zaki S. R., Paul G., Lam S. K., Tan C. T. 1999; Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia. Lancet 354:1257–1259 [View Article][PubMed]
    [Google Scholar]
  7. Diederich S., Moll M., Klenk H. D., Maisner A. 2005; The Nipah virus fusion protein is cleaved within the endosomal compartment. J Biol Chem 280:29899–29903 [View Article][PubMed]
    [Google Scholar]
  8. Diederich S., Thiel L., Maisner A. 2008; Role of endocytosis and cathepsin-mediated activation in Nipah virus entry. Virology 375:391–400 [View Article][PubMed]
    [Google Scholar]
  9. Diederich S., Sauerhering L., Weis M., Altmeppen H., Schaschke N., Reinheckel T., Erbar S., Maisner A. 2012; Activation of the Nipah virus fusion protein in MDCK cells is mediated by cathepsin B within the endosome-recycling compartment. J Virol 86:3736–3745 [View Article][PubMed]
    [Google Scholar]
  10. Drexler J. F., Corman V. M., Gloza-Rausch F., Seebens A., Annan A., Ipsen A., Kruppa T., Müller M. A., Kalko E. K.other authors 2009; Henipavirus RNA in African bats. PLoS ONE 4:e6367 [View Article][PubMed]
    [Google Scholar]
  11. Drexler J. F., Corman V. M., Müller M. A., Maganga G. D., Vallo P., Binger T., Gloza-Rausch F., Rasche A., Yordanov S.other authors 2012; Bats host major mammalian paramyxoviruses. Nat Commun 3:796 [View Article][PubMed]
    [Google Scholar]
  12. Escaffre O., Borisevich V., Rockx B. 2013; Pathogenesis of Hendra and Nipah virus infection in humans. J Infect Dev Ctries 7:308–311 [View Article][PubMed]
    [Google Scholar]
  13. Halpin K., Hyatt A. D., Fogarty R., Middleton D., Bingham J., Epstein J. H., Rahman S. A., Hughes T., Smith C.other authors 2011; Pteropid bats are confirmed as the reservoir hosts of henipaviruses: a comprehensive experimental study of virus transmission. Am J Trop Med Hyg 85:946–951 [View Article][PubMed]
    [Google Scholar]
  14. Hayman D. T., Wang L. F., Barr J., Baker K. S., Suu-Ire R., Broder C. C., Cunningham A. A., Wood J. L. 2011; Antibodies to henipavirus or henipa-like viruses in domestic pigs in Ghana, West Africa. PLoS ONE 6:e25256 [View Article][PubMed]
    [Google Scholar]
  15. Hoffmann M., Müller M. A., Drexler J. F., Glende J., Erdt M., Gützkow T., Losemann C., Binger T., Deng H.other authors 2013; Differential sensitivity of bat cells to infection by enveloped RNA viruses: coronaviruses, paramyxoviruses, filoviruses, and influenza viruses. PLoS ONE 8:e72942 [View Article][PubMed]
    [Google Scholar]
  16. Khan M. S., Hossain J., Gurley E. S., Nahar N., Sultana R., Luby S. P. 2010; Use of infrared camera to understand bats’ access to date palm sap: implications for preventing Nipah virus transmission. EcoHealth 7:517–525 [View Article][PubMed]
    [Google Scholar]
  17. Krüger N., Hoffmann M., Weis M., Drexler J. F., Müller M. A., Winter C., Corman V. M., Gützkow T., Drosten C.other authors 2013; Surface glycoproteins of an African henipavirus induce syncytium formation in a cell line derived from an African fruit bat, Hypsignathus monstrosus . J Virol 87:13889–13891 [View Article][PubMed]
    [Google Scholar]
  18. Lamp B., Dietzel E., Kolesnikova L., Sauerhering L., Erbar S., Weingartl H., Maisner A. 2013; Nipah virus entry and egress from polarized epithelial cells. J Virol 87:3143–3154 [View Article][PubMed]
    [Google Scholar]
  19. Luby S. P., Gurley E. S., Hossain M. J. 2009a; Transmission of human infection with Nipah virus. Clin Infect Dis 49:1743–1748 [View Article][PubMed]
    [Google Scholar]
  20. Luby S. P., Hossain M. J., Gurley E. S., Ahmed B. N., Banu S., Khan S. U., Homaira N., Rota P. A., Rollin P. E.other authors 2009b; Recurrent zoonotic transmission of Nipah virus into humans, Bangladesh, 2001–2007. Emerg Infect Dis 15:1229–1235 [View Article][PubMed]
    [Google Scholar]
  21. Maisner A., Neufeld J., Weingartl H. 2009; Organ- and endotheliotropism of Nipah virus infections in vivo and in vitro. Thromb Haemost 102:1014–1023[PubMed]
    [Google Scholar]
  22. Marsh G. A., Todd S., Foord A., Hansson E., Davies K., Wright L., Morrissy C., Halpin K., Middleton D.other authors 2010; Genome sequence conservation of Hendra virus isolates during spillover to horses, Australia. Emerg Infect Dis 16:1767–1769 [View Article][PubMed]
    [Google Scholar]
  23. Marsh G. A., de Jong C., Barr J. A., Tachedjian M., Smith C., Middleton D., Yu M., Todd S., Foord A. J.other authors 2012; Cedar virus: a novel henipavirus isolated from Australian bats. PLoS Pathog 8:e1002836 [View Article][PubMed]
    [Google Scholar]
  24. Moll M., Diederich S., Klenk H. D., Czub M., Maisner A. 2004; Ubiquitous activation of the Nipah virus fusion protein does not require a basic amino acid at the cleavage site. J Virol 78:9705–9712 [View Article][PubMed]
    [Google Scholar]
  25. Negrete O. A., Levroney E. L., Aguilar H. C., Bertolotti-Ciarlet A., Nazarian R., Tajyar S., Lee B. 2005; EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus. Nature 436:401–405[PubMed]
    [Google Scholar]
  26. Negrete O. A., Wolf M. C., Aguilar H. C., Enterlein S., Wang W., Mühlberger E., Su S. V., Bertolotti-Ciarlet A., Flick R., Lee B. 2006; Two key residues in ephrinB3 are critical for its use as an alternative receptor for Nipah virus. PLoS Pathog 2:e7 [View Article][PubMed]
    [Google Scholar]
  27. Niwa H., Yamamura K., Miyazaki J. 1991; Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199 [View Article][PubMed]
    [Google Scholar]
  28. Pager C. T., Craft W. W. Jr, Patch J., Dutch R. E. 2006; A mature and fusogenic form of the Nipah virus fusion protein requires proteolytic processing by cathepsin L. Virology 346:251–257 [View Article][PubMed]
    [Google Scholar]
  29. Popa A., Pager C. T., Dutch R. E. 2011; C-terminal tyrosine residues modulate the fusion activity of the Hendra virus fusion protein. Biochemistry 50:945–952 [View Article][PubMed]
    [Google Scholar]
  30. Popa A., Carter J. R., Smith S. E., Hellman L., Fried M. G., Dutch R. E. 2012; Residues in the Hendra virus fusion protein transmembrane domain are critical for endocytic recycling. J Virol 86:3014–3026 [View Article][PubMed]
    [Google Scholar]
  31. Smith E. C., Popa A., Chang A., Masante C., Dutch R. E. 2009; Viral entry mechanisms: the increasing diversity of paramyxovirus entry. FEBS J 276:7217–7227 [View Article][PubMed]
    [Google Scholar]
  32. Thiel L., Diederich S., Erbar S., Pfaff D., Augustin H. G., Maisner A. 2008; Ephrin-B2 expression critically influences Nipah virus infection independent of its cytoplasmic tail. Virol J 5:163 [View Article][PubMed]
    [Google Scholar]
  33. Wang L. F., Yu M., Hansson E., Pritchard L. I., Shiell B., Michalski W. P., Eaton B. T. 2000; The exceptionally large genome of Hendra virus: support for creation of a new genus within the family Paramyxoviridae. J Virol 74:9972–9979 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.060632-0
Loading
/content/journal/jgv/10.1099/vir.0.060632-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error