1887

Abstract

Previous studies have shown that hepatitis C virus (HCV) enters human hepatic cells through interaction with a series of cellular receptors, followed by clathrin-mediated, pH-dependent endocytosis. Here, we investigated the mechanisms of HCV entry into multiple HCV-permissive human hepatocyte-derived cells using trans-complemented HCV particles (HCVtcp). Knockdown of CD81 and claudin-1, or treatment with bafilomycin A1, reduced infection in Huh-7 and Huh7.5.1 cells, suggesting that HCV entered both cell types via receptor-mediated, pH-dependent endocytosis. Interestingly, knockdown of the clathrin heavy chain or dynamin-2 (Dyn2), as well as expression of the dominant-negative form of Dyn2, reduced infection of Huh-7 cells with HCVtcp, whereas infectious entry of HCVtcp into Huh7.5.1 cells was not impaired. Infection of Huh7.5.1 cells with culture-derived HCV (HCVcc) via a clathrin-independent pathway was also observed. Knockdown of caveolin-1, ADP-ribosylation factor 6 (Arf6), flotillin, p21-activated kinase 1 (PAK1) and the PAK1 effector C-terminal binding protein 1 of E1A had no inhibitory effects on HCVtcp infection into Huh7.5.1 cells, thus suggesting that the infectious entry pathway of HCV into Huh7.5.1 cells was not caveolae-mediated, or Arf6- and flotillin-mediated endocytosis and macropinocytosis, but rather may have occurred via an undefined endocytic pathway. Further analysis revealed that HCV entry was clathrin- and dynamin-dependent in ORL8c and HepCD81/miR122 cells, but productive entry of HCV was clathrin- and dynamin-independent in Hep3B/miR122 cells. Collectively, these data indicated that HCV entered different target cells through different entry routes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.068528-0
2014-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/12/2658.html?itemId=/content/journal/jgv/10.1099/vir.0.068528-0&mimeType=html&fmt=ahah

References

  1. Acosta E. G., Castilla V., Damonte E. B. 2008; Functional entry of dengue virus into Aedes albopictus mosquito cells is dependent on clathrin-mediated endocytosis. J Gen Virol 89:474–484 [View Article][PubMed]
    [Google Scholar]
  2. Acosta E. G., Castilla V., Damonte E. B. 2009; Alternative infectious entry pathways for dengue virus serotypes into mammalian cells. Cell Microbiol 11:1533–1549 [View Article][PubMed]
    [Google Scholar]
  3. Akazawa D., Date T., Morikawa K., Murayama A., Omi N., Takahashi H., Nakamura N., Ishii K., Suzuki T. other authors 2008; Characterization of infectious hepatitis C virus from liver-derived cell lines. Biochem Biophys Res Commun 377:747–751 [View Article][PubMed]
    [Google Scholar]
  4. Bartosch B., Vitelli A., Granier C., Goujon C., Dubuisson J., Pascale S., Scarselli E., Cortese R., Nicosia A., Cosset F. L. 2003; Cell entry of hepatitis C virus requires a set of co-receptors that include the CD81 tetraspanin and the SR-B1 scavenger receptor. J Bio Chem 278:41624–41630 [CrossRef]
    [Google Scholar]
  5. Benedicto I., Molina-Jimenez F., Bartosch B., Cosset F. L., Lavillette D., Prieto J., Moreno-Otero R., Valenzuela-Fernandez A., Aldabe R., Lopez-Cabrera M., Majano P. L. 2009; The tight junction-associated protein occludin is required for a postbinding step in hepatitis C virus entry and infection. J Virol 83:8012–8020 [CrossRef]
    [Google Scholar]
  6. Blanchard E., Belouzard S., Goueslain L., Wakita T., Dubuisson J., Wychowski C., Rouillé Y. 2006; Hepatitis C virus entry depends on clathrin-mediated endocytosis. J Virol 80:6964–6972 [View Article][PubMed]
    [Google Scholar]
  7. Blight K. J., McKeating J. A., Rice C. M. 2002; Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. J Virol 76:13001–13014 [View Article][PubMed]
    [Google Scholar]
  8. Codran A., Royer C., Jaeck D., Bastien-Valle M., Baumert T. F., Kieny M. P., Pereira C. A., Martin J. P. 2006; Entry of hepatitis C virus pseudotypes into primary human hepatocytes by clathrin-dependent endocytosis. J Gen Virol 87:2583–2593 [View Article][PubMed]
    [Google Scholar]
  9. Coller K. E., Berger K. L., Heaton N. S., Cooper J. D., Yoon R., Randall G. 2009; RNA interference and single particle tracking analysis of hepatitis C virus endocytosis. PLoS Pathog 5:e1000702 [View Article][PubMed]
    [Google Scholar]
  10. Damke H., Baba T., van der Bliek A. M., Schmid S. L. 1995; Clathrin-independent pinocytosis is induced in cells overexpressing a temperature-sensitive mutant of dynamin. J Cell Biol 131:69–80 [View Article][PubMed]
    [Google Scholar]
  11. Damm E. M., Pelkmans L., Kartenbeck J., Mezzacasa A., Kurzchalia T., Helenius A. 2005; Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae. J Cell Biol 168:477–488 [View Article][PubMed]
    [Google Scholar]
  12. Evans M. J., von Hahn T., Tscherne D. M., Syder A. J., Panis M., Wolk B., Hatziioannou T., McKeating J. A., Bieniasz P. D., Rice C. M. 2007; Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 446:801–805 [CrossRef]
    [Google Scholar]
  13. Grove J., Marsh M. 2011; The cell biology of receptor-mediated virus entry. J Cell Biol 195:1071–1082 [View Article][PubMed]
    [Google Scholar]
  14. Grove J., Nielsen S., Zhong J., Bassendine M. F., Drummer H. E., Balfe P., McKeating J. A. 2008; Identification of a residue in hepatitis C virus E2 glycoprotein that determines scavenger receptor BI and CD81 receptor dependency and sensitivity to neutralizing antibodies. J Virol 82:12020–12029 [View Article][PubMed]
    [Google Scholar]
  15. Helle F., Vieyres G., Elkrief L., Popescu C.-I., Wychowski C., Descamps V., Castelain S., Roingeard P., Duverlie G., Dubuisson J. 2010; Role of N-linked glycans in the functions of hepatitis C virus envelope proteins incorporated into infectious virions. J Virol 84:11905–11915 [View Article][PubMed]
    [Google Scholar]
  16. Hoofnagle J. H. 2002; Course and outcome of hepatitis C. Hepatology 36:Suppl 1S21–S29 [View Article][PubMed]
    [Google Scholar]
  17. Kambara H., Fukuhara T., Shiokawa M., Ono C., Ohara Y., Kamitani W., Matsuura Y. 2012; Establishment of a novel permissive cell line for the propagation of hepatitis C virus by expression of microRNA miR122. J Virol 86:1382–1393 [View Article][PubMed]
    [Google Scholar]
  18. Kataoka C., Kaname Y., Taguwa S., Abe T., Fukuhara T., Tani H., Moriishi K., Matsuura Y. 2012; Baculovirus GP64-mediated entry into mammalian cells. J Virol 86:2610–2620 [View Article][PubMed]
    [Google Scholar]
  19. Kato N., Mori K., Abe K., Dansako H., Kuroki M., Ariumi Y., Wakita T., Ikeda M. 2009; Efficient replication systems for hepatitis C virus using a new human hepatoma cell line. Virus Res 146:41–50 [View Article][PubMed]
    [Google Scholar]
  20. Liu S., Yang W., Shen L., Turner J. R., Coyne C. B., Wang T. 2009; Tight junction proteins claudin-1 and occludin control hepatitis C virus entry and are downregulated during infection to prevent superinfection. J Virol 83:2011–2014 [CrossRef]
    [Google Scholar]
  21. Lupberger J., Zeisel M. B., Xiao F., Thumann C., Fofana I., Zona L., Davis C., Mee C. J., Turek M. other authors 2011; EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nat Med 17:589–595 [View Article][PubMed]
    [Google Scholar]
  22. Marsh M., Helenius A. 2006; Virus entry: open sesame. Cell 124:729–740 [View Article][PubMed]
    [Google Scholar]
  23. Matlin K. S., Reggio H., Helenius A., Simons K. 1981; Infectious entry pathway of influenza virus in a canine kidney cell line. J Cell Biol 91:601–613 [View Article][PubMed]
    [Google Scholar]
  24. McKeating J. A., Zhang L. Q., Logvinoff C., Flint M., Zhang J., Yu J., Butera D., Ho D. D., Dustin L. B., Rice C. M., Balfe P. 2004; Diverse hepatitis C virus glycoproteins mediate viral infection in a CD81-dependent manner. Journal of virology 78:8496–8505 [CrossRef]
    [Google Scholar]
  25. Meertens L., Bertaux C., Dragic T. 2006; Hepatitis C virus entry requires a critical postinternalization step and delivery to early endosomes via clathrin-coated vesicles. J Virol 80:11571–11578 [View Article][PubMed]
    [Google Scholar]
  26. Mercer J., Schelhaas M., Helenius A. 2010; Virus entry by endocytosis. Annu Rev Biochem 79:803–833 [View Article][PubMed]
    [Google Scholar]
  27. Miaczynska M., Stenmark H. 2008; Mechanisms and functions of endocytosis. J Cell Biol 180:7–11 [View Article][PubMed]
    [Google Scholar]
  28. Mosso C., Galván-Mendoza I. J., Ludert J. E., del Angel R. M. 2008; Endocytic pathway followed by dengue virus to infect the mosquito cell line C6/36 HT. Virology 378:193–199 [View Article][PubMed]
    [Google Scholar]
  29. Norkin L. C., Anderson H. A., Wolfrom S. A., Oppenheim A. 2002; Caveolar endocytosis of simian virus 40 is followed by brefeldin A-sensitive transport to the endoplasmic reticulum, where the virus disassembles. J Virol 76:5156–5166 [View Article][PubMed]
    [Google Scholar]
  30. Pelkmans L., Kartenbeck J., Helenius A. 2001; Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 3:473–483 [View Article][PubMed]
    [Google Scholar]
  31. Pileri P., Uematsu Y., Campagnoli S., Galli G., Falugi F., Petracca R., Weiner A. J., Houghton M., Rosa D., Grandi G., Abrignani S. 1998; Binding of hepatitis C virus to CD81. Science 282:938–941 [CrossRef]
    [Google Scholar]
  32. Ploss A., Evans M. J., Gaysinskaya V. A., Panis M., You H., de Jong Y. P., Rice C. M. 2009; Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature 457:882–886 [CrossRef]
    [Google Scholar]
  33. Sainz B. Jr, Barretto N., Martin D. N., Hiraga N., Imamura M., Hussain S., Marsh K. A., Yu X., Chayama K. other authors 2012; Identification of the Niemann–Pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor. Nat Med 18:281–285 [View Article][PubMed]
    [Google Scholar]
  34. Scarselli E., Ansuini H., Cerino R., Roccasecca R. M., Acali S., Filocamo G., Traboni C., Nicosia A., Cortese R., Vitelli A. 2002; The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. Embo J 21:5017–5025 [CrossRef]
    [Google Scholar]
  35. Sieczkarski S. B., Whittaker G. R. 2002a; Dissecting virus entry via endocytosis. J Gen Virol 83:1535–1545[PubMed]
    [Google Scholar]
  36. Sieczkarski S. B., Whittaker G. R. 2002b; Influenza virus can enter and infect cells in the absence of clathrin-mediated endocytosis. J Virol 76:10455–10464 [View Article][PubMed]
    [Google Scholar]
  37. Sumpter R. Jr, Loo Y.-M., Foy E., Li K., Yoneyama M., Fujita T., Lemon S. M., Gale M. Jr 2005; Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I. J Virol 79:2689–2699 [View Article][PubMed]
    [Google Scholar]
  38. Suzuki T., Ishii K., Aizaki H., Wakita T. 2007; Hepatitis C viral life cycle. Adv Drug Deliv Rev 59:1200–1212 [View Article][PubMed]
    [Google Scholar]
  39. Suzuki R., Saito K., Kato T., Shirakura M., Akazawa D., Ishii K., Aizaki H., Kanegae Y., Matsuura Y. other authors 2012; Trans-complemented hepatitis C virus particles as a versatile tool for study of virus assembly and infection. Virology 432:29–38 [View Article][PubMed]
    [Google Scholar]
  40. Suzuki R., Matsuda M., Watashi K., Aizaki H., Matsuura Y., Wakita T., Suzuki T. 2013; Signal peptidase complex subunit 1 participates in the assembly of hepatitis C virus through an interaction with E2 and NS2. PLoS Pathog 9:e1003589 [View Article][PubMed]
    [Google Scholar]
  41. Trotard M., Lepère-Douard C., Régeard M., Piquet-Pellorce C., Lavillette D., Cosset F. L., Gripon P., Le Seyec J. 2009; Kinases required in hepatitis C virus entry and replication highlighted by small interference RNA screening. FASEB J 23:3780–3789 [View Article][PubMed]
    [Google Scholar]
  42. van der Schaar H. M., Rust M. J., Chen C., van der Ende-Metselaar H., Wilschut J., Zhuang X., Smit J. M. 2008; Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells. PLoS Pathog 4:e1000244 [View Article][PubMed]
    [Google Scholar]
  43. Vieyres G., Thomas X., Descamps V., Duverlie G., Patel A. H., Dubuisson J. 2010; Characterization of the envelope glycoproteins associated with infectious hepatitis C virus. J Virol 84:10159–10168 [View Article][PubMed]
    [Google Scholar]
  44. Zhong J., Gastaminza P., Cheng G., Kapadia S., Kato T., Burton D. R., Wieland S. F., Uprichard S. L., Wakita T., Chisari F. V. 2005; Robust hepatitis C virus infection in vitro . Proc Natl Acad Sci U S A 102:9294–9299 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.068528-0
Loading
/content/journal/jgv/10.1099/vir.0.068528-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error