1887

Abstract

The 27 kDa protein encoded by ORF3 of (GRV) is required for viral RNA protection and movement of viral RNA through the phloem. Localization studies have revealed that this protein is located in nuclei, preferentially targeting nucleoli. We have demonstrated that amino acids (aa) 108–122 of the GRV ORF3 protein contain an arginine-rich nuclear localization signal. Arginine-to-asparagine substitutions in this region decreased the level of the ORF3 protein accumulation in nuclei. A leucine-rich nuclear export signal (NES) was located at aa 148–156 of the GRV ORF3 protein. Leucine-to-alanine substitutions in this region resulted in a dramatic increase in GRV ORF3 protein accumulation in both nuclei and nucleoli. Consistent with this, we also showed that the previously identified NES of BR1 protein of can functionally replace the leucine-rich region of GRV ORF3 in nuclear export.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.79854-0
2004-05-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/5/vir851329.html?itemId=/content/journal/jgv/10.1099/vir.0.79854-0&mimeType=html&fmt=ahah

References

  1. Demler S. A., Rucker D. G., de Zoeten G. A. 1993; The chimeric nature of the genome of pea enation mosaic virus: the independent replication of RNA-2. J Gen Virol 74:1–14
    [Google Scholar]
  2. Fischer U., Huber J., Boelens W. C., Mattaj I. W., Luhrmann R. 1995; The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 82:475–483
    [Google Scholar]
  3. Fridell R. A., Fischer U., Luhrmann R., Meyer B. E., Meinkoth J. L., Malim M. H., Cullen B. R. 1996; Amphibian transcription factor IIIA proteins contain a sequence element functionally equivalent to the nuclear export signal of human immunodeficiency virus type 1 Rev. Proc Natl Acad Sci U S A 93:2936–2940
    [Google Scholar]
  4. Gibbs M. G., Cooper J. I., Waterhouse P. M. 1996; The genome organization and affinities of an Australian isolate of carrot mottle umbravirus. Virology 224:280–289
    [Google Scholar]
  5. Gorlich D., Mattaj I. A. 1996; Nucleocytoplasmic transport. Science 271:1513–1518
    [Google Scholar]
  6. Haasen D., Kohler C., Neuhaus G., Merkle T. 1999; Nuclear export of proteins in plants: AtXPO1 is the export receptor for leucine-rich nuclear export signals in Arabidopsis thaliana . Plant J 20:695–705
    [Google Scholar]
  7. Higuchi R., Krummel B., Saaki R. K. 1988; A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res 16:7351–7367
    [Google Scholar]
  8. Kalderon D., Richardson W. D., Markham A. F., Smith A. E. 1984; Sequence requirements for nuclear localisation of SV40 large T antigen. Nature 311:33–38
    [Google Scholar]
  9. Kosugi S., Ohashi Y. 2002; Interaction of the Arabidopsis E2F and DP proteins confers their concomitant nuclear translocation and transactivation. Plant Physiol 128:833–843
    [Google Scholar]
  10. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132
    [Google Scholar]
  11. Nigg E. A. 1997; Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature 386:779–787
    [Google Scholar]
  12. Robbins J., Dilworth S. M., Laskey R. A., Dingwall C. 1991; Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64:615–623
    [Google Scholar]
  13. Ryabov E. V., Oparka K. J., Santa Cruz S., Robinson D. J., Taliansky M. E. 1998; Intracellular location of two groundnut rosette umbravirus proteins delivered by PVX and TMV vectors. Virology 242:303–313
    [Google Scholar]
  14. Ryabov E. V., Roberts I. M., Palukaitis P., Taliansky M. E. 1999a; Host-specific cell-to-cell and long-distance movements of cucumber mosaic virus are facilitated by the movement protein of groundnut rosette virus. Virology 260:98–108
    [Google Scholar]
  15. Ryabov E. V., Robinson D. J., Taliansky M. E. 1999b; A plant virus-encoded protein facilitates long-distance movement of heterologous viral RNA. Proc Natl Acad Sci U S A 96:1212–1217
    [Google Scholar]
  16. Ryabov E. V., Robinson D. J., Taliansky M. 2001; Umbravirus-encoded proteins that both stabilise heterologous viral RNA in vivo and mediate its systemic movement in some plant species. Virology 288:391–400
    [Google Scholar]
  17. Sanderfoot A. A., Lazarowitz S. G. 1995; Cooperation in viral movement: the geminivirus BL1 movement protein interacts with BR1 and redirects it from the nucleus to cell periphery. Plant Cell 7:1185–1194
    [Google Scholar]
  18. Sanderfoot A. A., Ingram D. J., Lazarowitz S. G. 1996; A viral movement protein as a nuclear shuttle: the geminivirus BR1 movement protein contains domains essential for interaction with BL1 and nuclear localization. Plant Physiol 110:23–33
    [Google Scholar]
  19. Taliansky M. E., Robinson D. J. 2003; Molecular biology of umbraviruses: phantom warriors. J Gen Virol 84:1951–1960
    [Google Scholar]
  20. Taliansky M. E., Robinson D. J., Murant A. F. 1996; Complete nucleotide sequence and organisation of the RNA genome of groundnut rosette umbravirus. J Gen Virol 77:2335–2345
    [Google Scholar]
  21. Taliansky M., Roberts I. M., Kalinina N., Ryabov E. V., Raj S. K., Robinson D. J., Oparka K. J. 2003; An umbraviral protein, involved in long-distance RNA movement, binds viral RNA and forms unique, protective ribonucleoprotein complexes. J Virol 77:3031–3040
    [Google Scholar]
  22. Van Wezel R., Liu H., Wu Z., Stanley J., Hong Y. 2003; Contribution of the zinc finger and DNA binding by suppressor of post-transcriptional gene silencing. J Virol 77:696–700
    [Google Scholar]
  23. Ward B. M., Lazarowitz S. G. 1999; Nuclear export in plants: use of geminivirus movement proteins for a cell-based export assay. Plant Cell 11:1267–1276
    [Google Scholar]
  24. Wen W., Mienkoth J. L., Tsien R. Y., Taylor S. S. 1995; Identification of a signal for rapid export of proteins from the nucleus. Cell 82:463–473
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.79854-0
Loading
/content/journal/jgv/10.1099/vir.0.79854-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error