1887

Abstract

Intracellular antibodies or intrabodies (ICAbs) have great potential in protein knockout strategies for intracellular antigens. In this study, they have been used to investigate the role of the rotavirus non-structural protein NSP5 in the virus replication cycle. Intracellular antibody-capture technology was used to select single-chain Fv format (scFv) ICAbs against an NSP5 mutant. Five different specific ICAbs were selected and expressed in MA104 cells, in the scFv format, as cytoplasmic- and nuclear-tagged forms. By confocal microscopy, it was found that three of these ICAbs recognized the full-length wild-type NSP5 specifically, forming antigen-specific aggresomes in the cytoplasm of cotransfected cells. Expression of the ICAbs in rotavirus-infected cells largely reduced the assembly of viroplasms and cellular cytopathic effect. Replication of dsRNA was partially inhibited, despite there being no reduction in virus titre. These results demonstrate for the first time a key role for NSP5 during the virus replicative cycle.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80075-0
2004-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/11/vir853285.html?itemId=/content/journal/jgv/10.1099/vir.0.80075-0&mimeType=html&fmt=ahah

References

  1. Afrikanova I., Miozzo M. C., Giambiagi S., Burrone O. 1996; Phosphorylation generates different forms of rotavirus NSP5. J Gen Virol 77:2059–2065 [CrossRef]
    [Google Scholar]
  2. Afrikanova I., Fabbretti E., Miozzo M. C., Burrone O. R. 1998; Rotavirus NSP5 phosphorylation is up-regulated by interaction with NSP2. J Gen Virol 79:2679–2686
    [Google Scholar]
  3. Berois M., Sapin C., Erk I., Poncet D., Cohen J. 2003; Rotavirus nonstructural protein NSP5 interacts with major core protein VP2. J Virol 77:1757–1763 [CrossRef]
    [Google Scholar]
  4. Biocca S., Ruberti F., Tafani M., Pierandrei-Amaldi P., Cattaneo A. 1995; Redox state of single chain Fv fragments targeted to the endoplasmic reticulum, cytosol and mitochondria. Biotechnology (N Y) 13:1110–1115 [CrossRef]
    [Google Scholar]
  5. Bird R. E., Hardman K. D., Jacobson J. W. 7 other authors 1988; Single-chain antigen-binding proteins. Science 242:423–426 [CrossRef]
    [Google Scholar]
  6. Blackhall J., Fuentes A., Hansen K., Magnusson G. 1997; Serine protein kinase activity associated with rotavirus phosphoprotein NSP5. J Virol 71:138–144
    [Google Scholar]
  7. Cattaneo A., Biocca S. (editors) 1997 Intracellular Antibodies: Development and Applications New York: Springer;
    [Google Scholar]
  8. Cattaneo A., Biocca S. 1999; The selection of intracellular antibodies. Trends Biotechnol 17:115–121 [CrossRef]
    [Google Scholar]
  9. Chen D., Gombold J. L., Ramig R. F. 1990; Intracellular RNA synthesis directed by temperature-sensitive mutants of simian rotavirus SA11. Virology 178:143–151 [CrossRef]
    [Google Scholar]
  10. Eichwald C., Vascotto F., Fabbretti E., Burrone O. R. 2002; Rotavirus NSP5: mapping phosphorylation sites and kinase activation and viroplasm localization domains. J Virol 76:3461–3470 [CrossRef]
    [Google Scholar]
  11. Eichwald C., Rodriguez J. F., Burrone O. R. 2004; Characterization of rotavirus NSP2/NSP5 interactions and the dynamics of viroplasm formation. J Gen Virol 85:625–634 [CrossRef]
    [Google Scholar]
  12. Fabbretti E., Afrikanova I., Vascotto F., Burrone O. R. 1999; Two non-structural rotavirus proteins, NSP2 and NSP5, form viroplasm-like structures in vivo . J Gen Virol 80:333–339
    [Google Scholar]
  13. Gallegos C. O., Patton J. T. 1989; Characterization of rotavirus replication intermediates: a model for the assembly of single-shelled particles. Virology 172:616–627 [CrossRef]
    [Google Scholar]
  14. Glass R. I., Bresee J. S., Parashar U., Miller M., Gentsch J. R. 1997; Rotavirus vaccines at the threshold. Nat Med 3:1324–1325 [CrossRef]
    [Google Scholar]
  15. Hanke T., Szawlowski P., Randall R. E. 1992; Construction of solid matrix–antibody–antigen complexes containing simian immunodeficiency virus p27 using tag-specific monoclonal antibody and tag-linked antigen. J Gen Virol 73:653–660 [CrossRef]
    [Google Scholar]
  16. Hollenberg S. M., Sternglanz R., Cheng P. F., Weintraub H. 1995; Identification of a new family of tissue-specific basic helix-loop-helix proteins with a two-hybrid system. Mol Cell Biol 15:3813–3822
    [Google Scholar]
  17. Kattoura M. D., Chen X., Patton J. T. 1994; The rotavirus RNA-binding protein NS35 (NSP2) forms 10S multimers and interacts with the viral RNA polymerase. Virology 202:803–813 [CrossRef]
    [Google Scholar]
  18. Kopito R. R., Sitia R. 2000; Aggresomes and Russell bodies. Symptoms of cellular indigestion?. EMBO Rep 1:225–231 [CrossRef]
    [Google Scholar]
  19. Marasco W. A., Haseltine W. A., Chen S. Y. 1993; Design, intracellular expression, and activity of a human anti-human immunodeficiency virus type 1 gp120 single-chain antibody. Proc Natl Acad Sci U S A 90:7889–7893 [CrossRef]
    [Google Scholar]
  20. Mohan K. V. K., Muller J., Atreya C. D. 2003; The N- and C-terminal regions of rotavirus NSP5 are the critical determinants for the formation of viroplasm-like structures independent of NSP2. J Virol 77:12184–12192 [CrossRef]
    [Google Scholar]
  21. Owens R. J., Limn C., Roy P. 2004; Role of an arbovirus nonstructural protein in cellular pathogenesis and virus release. J Virol 78:6649–6656 [CrossRef]
    [Google Scholar]
  22. Patton J. T., Gallegos C. O. 1988; Structure and protein composition of the rotavirus replicase particle. Virology 166:358–365 [CrossRef]
    [Google Scholar]
  23. Persic L., Righi M., Roberts A., Hoogenboom H. R., Cattaneo A., Bradbury A. 1997; Targeting vectors for intracellular immunisation. Gene 187:1–8 [CrossRef]
    [Google Scholar]
  24. Petrie B. L., Greenberg H. B., Graham D. Y., Estes M. K. 1984; Ultrastructural localization of rotavirus antigens using colloidal gold. Virus Res 1:133–152 [CrossRef]
    [Google Scholar]
  25. Proba K., Honegger A., Plückthun A. 1997; A natural antibody missing a cysteine in VH: consequences for thermodynamic stability and folding. J Mol Biol 265:161–172 [CrossRef]
    [Google Scholar]
  26. Proba K., Wörn A., Honegger A., Plückthun A. 1998; Antibody scFv fragments without disulfide bonds, made by molecular evolution. J Mol Biol 275:245–253 [CrossRef]
    [Google Scholar]
  27. Ramig R. F., Petrie B. L. 1984; Characterization of temperature-sensitive mutants of simian rotavirus SA11: protein synthesis and morphogenesis. J Virol 49:665–673
    [Google Scholar]
  28. Silvestri L. S., Taraporewala Z. F., Patton J. T. 2004; Rotavirus replication: plus-sense templates for double-stranded RNA synthesis are made in viroplasms. J Virol 78:7763–7774 [CrossRef]
    [Google Scholar]
  29. Taraporewala Z. F., Schuck P., Ramig R. F., Silvestri L., Patton J. T. 2002; Analysis of a temperature-sensitive mutant rotavirus indicates that NSP2 octamers are the functional form of the protein. J Virol 76:7082–7093 [CrossRef]
    [Google Scholar]
  30. Tavladoraki P., Benvenuto E., Trinca S., De Martinis D., Cattaneo A., Galeffi P. 1993; Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack. Nature 366:469–472 [CrossRef]
    [Google Scholar]
  31. Torres-Vega M. A., González R. A., Duarte M., Poncet D., López S., Arias C. F. 2000; The C-terminal domain of rotavirus NSP5 is essential for its multimerization, hyperphosphorylation and interaction with NSP6. J Gen Virol 81:821–830
    [Google Scholar]
  32. Visintin M., Tse E., Axelson H., Rabbitts T. H., Cattaneo A. 1999; Selection of antibodies for intracellular function using a two-hybrid in vivo system. Proc Natl Acad Sci U S A 96:11723–11728 [CrossRef]
    [Google Scholar]
  33. Visintin M., Settanni G., Maritan A., Graziosi S., Marks J. D., Cattaneo A. 2002; The intracellular antibody capture technology (IACT): towards a consensus sequence for intracellular antibodies. J Mol Biol 317:73–83 [CrossRef]
    [Google Scholar]
  34. Zacchi P., Gostissa M., Uchida T. 7 other authors 2002; The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature 419:853–857 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80075-0
Loading
/content/journal/jgv/10.1099/vir.0.80075-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error