1887

Abstract

Sequencing of the gene that encodes the capsid protein VP1 has been used as a surrogate for antigenic typing in order to distinguish enterovirus serotypes; three new serotypes were identified recently by this method. In this study, 14 enterovirus isolates from six countries were characterized as members of two new types within the species , based on sequencing of the complete capsid-encoding (P1) region. Isolates within each of these two types differed significantly from one another and from all other known enterovirus serotypes on the basis of sequences that encode either VP1 alone or the entire P1 region. Members of each type were ⩾77·2 % identical to one another (89·5 % amino acid identity) in VP1, but members of the two different types differed from one another and from other enteroviruses by ⩾31 % in nucleotide sequence (25 % amino acid sequence difference), indicating that the two groups represent separate new candidate enterovirus types. The complete P1 sequences differed from those of all other enterovirus serotypes by ⩾31 % (26 % amino acid sequence difference), but were highly conserved within a serotype (<8 % amino acid sequence difference). Phylogenetic analyses demonstrated that isolates of the same serotype were monophyletic in both VP1 and the capsid as a whole, as shown previously for other enterovirus serotypes. This paper proposes that these 14 isolates should be classified as members of two new human enterovirus types, enteroviruses 74 and 75 (EV74 and EV75).

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80148-0
2004-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/11/vir853205.html?itemId=/content/journal/jgv/10.1099/vir.0.80148-0&mimeType=html&fmt=ahah

References

  1. Bailly J.-L., Cardoso M.-C., Labbé A., Peigue-Lafeuille H. 2004; Isolation and identification of an enterovirus 77 recovered from a refugee child from Kosovo, and characterization of the complete virus genome. Virus Res 99:147–155 [CrossRef]
    [Google Scholar]
  2. Bodian D., Morgan I. M., Howe H. A. 1949; Differentiation of types of poliomyelitis viruses. III. The grouping of fourteen strains into three basic immunological types. Am J Hyg 49:234–245
    [Google Scholar]
  3. Brown B. A., Oberste M. S., Alexander J. P. Jr, Kennett M. L., Pallansch M. A. 1999; Molecular epidemiology and evolution of enterovirus 71 strains isolated from 1970 to 1998. J Virol 73:9969–9975
    [Google Scholar]
  4. Brown B., Oberste M. S., Maher K., Pallansch M. A. 2003; Complete genomic sequencing shows that polioviruses and members of human enterovirus species C are closely related in the noncapsid coding region. J Virol 77:8973–8984 [CrossRef]
    [Google Scholar]
  5. Caro V., Guillot S., Delpeyroux F., Crainic R. 2001; Molecular strategy for ‘serotyping’ of human enteroviruses. J Gen Virol 82:79–91
    [Google Scholar]
  6. Casas I., Palacios G. F., Trallero G., Cisterna D., Freire M. C., Tenorio A. 2001; Molecular characterization of human enteroviruses in clinical samples: comparison between VP2, VP1, and RNA polymerase regions using RT nested PCR assays and direct sequencing of products. J Med Virol 65:138–148 [CrossRef]
    [Google Scholar]
  7. Chaves S. S., Lobo S., Kennett M., Black J. 2001; Coxsackie virus A24 infection presenting as acute flaccid paralysis. Lancet 357:605 [CrossRef]
    [Google Scholar]
  8. Chumakov M., Voroshilova M., Shindarov L. 16 other authors 1979; Enterovirus 71 isolated from cases of epidemic poliomyelitis-like disease in Bulgaria. Arch Virol 60:329–340 [CrossRef]
    [Google Scholar]
  9. Gear J. H. S. 1984; Nonpolio causes of polio-like paralytic syndromes. Rev Infect Dis 6 (Suppl. 2):S379–S384 [CrossRef]
    [Google Scholar]
  10. Grimwood K., Huang Q. S., Sadleir L. G., Nix W. A., Kilpatrick D. R., Oberste M. S., Pallansch M. A. 2003; Acute flaccid paralysis from echovirus type 33 infection. J Clin Microbiol 41:2230–2232 [CrossRef]
    [Google Scholar]
  11. Grist N. R., Bell E. J. 1984; Paralytic poliomyelitis and nonpolio enteroviruses: studies in Scotland. Rev Infect Dis 6 (Suppl. 2):S385–S386 [CrossRef]
    [Google Scholar]
  12. Kapoor A., Ayyagari A., Dhole T. N. 2001; Non-polio enteroviruses in acute flaccid paralysis. Indian J Pediatr 68:927–929 [CrossRef]
    [Google Scholar]
  13. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  14. King A. M. Q., Brown F., Christian P. 8 other authors 2000; Picornaviridae . In Virus Taxonomy: Seventh Report of the International Committee on Taxonomy of Viruses . pp  657–678 Edited by van Regenmortel M. H. V., Fauquet C. M., Bishop D. H. L., Carstens E. B., Estes M. K., Lemon S. M., Maniloff J., Mayo M. A., McGeoch D. J., Pringle C. R., Wickner R. B. San Diego: Academic Press;
  15. Melnick J. L. 1984; Enterovirus type 71 infections: a varied clinical pattern sometimes mimicking paralytic poliomyelitis. Rev Infect Dis 6 (Suppl. 2):S387–S390 [CrossRef]
    [Google Scholar]
  16. Mulders M. N., Salminen M., Kalkkinen N., Hovi T. 2000; Molecular epidemiology of coxsackievirus B4 and disclosure of the correct VP1/2Apro cleavage site: evidence for high genomic diversity and long-term endemicity of distinct genotypes. J Gen Virol 81:803–812
    [Google Scholar]
  17. Norder H., Bjerregaard L., Magnius L. O. 2001; Homotypic echoviruses share aminoterminal VP1 sequence homology applicable for typing. J Med Virol 63:35–44 [CrossRef]
    [Google Scholar]
  18. Norder H., Bjerregaard L., Magnius L. O. 2002; Open reading frame sequence of an Asian enterovirus 73 strain reveals that the prototype from California is recombinant. J Gen Virol 83:1721–1728
    [Google Scholar]
  19. Norder H., Bjerregaard L., Magnius L., Lina B., Aymard M., Chomel J.-J. 2003; Sequencing of ‘untypable’ enteroviruses reveals two new types, EV-77 and EV-78, within human enterovirus type B and substitutions in the BC loop of the VP1 protein for known types. J Gen Virol 84:827–836 [CrossRef]
    [Google Scholar]
  20. Oberste M. S., Maher K., Kennett M. L., Campbell J. J., Carpenter M. S., Schnurr D., Pallansch M. A. 1999a; Molecular epidemiology and genetic diversity of echovirus type 30 (E30): genotypes correlate with temporal dynamics of E30 isolation. J Clin Microbiol 37:3928–3933
    [Google Scholar]
  21. Oberste M. S., Maher K., Kilpatrick D. R., Flemister M. R., Brown B. A., Pallansch M. A. 1999b; Typing of human enteroviruses by partial sequencing of VP1. J Clin Microbiol 37:1288–1293
    [Google Scholar]
  22. Oberste M. S., Maher K., Kilpatrick D. R., Pallansch M. A. 1999c; Molecular evolution of the human enteroviruses: correlation of serotype with VP1 sequence and application to picornavirus classification. J Virol 73:1941–1948
    [Google Scholar]
  23. Oberste M. S., Maher K., Flemister M. R., Marchetti G., Kilpatrick D. R., Pallansch M. A. 2000; Comparison of classic and molecular approaches for the identification of untypeable enteroviruses. J Clin Microbiol 38:1170–1174
    [Google Scholar]
  24. Oberste M. S., Schnurr D., Maher K., al-Busaidy S., Pallansch M. A. 2001; Molecular identification of new picornaviruses and characterization of a proposed enterovirus 73 serotype. J Gen Virol 82:409–416
    [Google Scholar]
  25. Oberste M. S., Nix W. A., Kilpatrick D. R., Flemister M. R., Pallansch M. A. 2003a; Molecular epidemiology and type-specific detection of echovirus 11 isolates from the Americas, Europe, Africa, Australia, southern Asia and the Middle East. Virus Res 91:241–248 [CrossRef]
    [Google Scholar]
  26. Oberste M. S., Nix W. A., Maher K., Pallansch M. A. 2003b; Improved molecular identification of enteroviruses by RT-PCR and amplicon sequencing. J Clin Virol 26:375–377 [CrossRef]
    [Google Scholar]
  27. Oberste M. S., Maher K., Pallansch M. A. 2004; Evidence for frequent recombination within species Human enterovirus B based on complete genomic sequences of all thirty-seven serotypes. J Virol 78:855–867 [CrossRef]
    [Google Scholar]
  28. Pallansch M. A., Roos R. P. 2001; Enteroviruses: polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses. In Fields Virology , 4th edn. pp  723–776 Edited by Knipe D. M., Howley P. M., Griffin D. E., Lamb R. A., Martin M. A., Roizman B., Straus S. E. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  29. Rico-Hesse R., Pallansch M. A., Nottay B. K., Kew O. M. 1987; Geographic distribution of wild poliovirus type 1 genotypes. Virology 160:311–322 [CrossRef]
    [Google Scholar]
  30. Santos A. P., Costa E. V., Oliveira S. S., Souza M. C., Da Silva E. E. 2002; RT-PCR based analysis of cell culture negative stools samples from poliomyelitis suspected cases. J Clin Virol 23:149–152 [CrossRef]
    [Google Scholar]
  31. Santti J., Harvala H., Kinnunen L., Hyypiä T. 2000; Molecular epidemiology and evolution of coxsackievirus A9. J Gen Virol 81:1361–1372
    [Google Scholar]
  32. Strimmer K., von Haeseler A. 1996; Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Mol Biol Evol 13:964–969 [CrossRef]
    [Google Scholar]
  33. Tamura K., Nei M. 1993; Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80148-0
Loading
/content/journal/jgv/10.1099/vir.0.80148-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error