1887

Abstract

A stable plasmid DNA, pMWJEAT, was constructed by using full-length (JEV) cDNA isolated from the wild-type strain JEV AT31. Recombinant JEV was obtained by synthetic RNA transfection into Vero cells and designated rAT virus. JEV rAT exhibited similar large-plaque morphology and antigenicity to the parental AT31 strain. Mutant clone pMWJEAT-E138K, containing a single Glu-to-Lys mutation at aa 138 of the envelope (E) protein, was also constructed to analyse the mechanisms of viral attenuation arising from this mutation. Recombinant JEV rAT-E138K was also recovered and displayed a smaller-plaque morphology and lower neurovirulence and neuroinvasiveness than either AT31 virus or rAT virus. JEV rAT-E138K exhibited greater plaque formation than rAT virus in virus–cell interactions under acidic conditions. Heparin or heparinase III treatment inhibited binding to Vero cells more efficiently for JEV rAT-E138K than for rAT virus. Inhibition of virus–cell interactions by using wheatgerm agglutinin was more effective for JEV rAT than for rAT-E138K on Vero cells. About 20 % of macropinoendocytosis of JEV rAT for Vero cells was inhibited by cytochalasin D treatment, but no such inhibition occurred for rAT-E138K virus. Furthermore, JEV rAT was predominantly secreted from infected cells, whereas rAT-E138K was more likely to be retained in infected cells. This study demonstrates clearly that a single Glu-to-Lys mutation at aa 138 of the envelope protein affects multiple steps of the viral life cycle. These multiple changes may induce substantial attenuation of JEV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80638-0
2005-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/8/vir862209.html?itemId=/content/journal/jgv/10.1099/vir.0.80638-0&mimeType=html&fmt=ahah

References

  1. Aihara S., Rao C. M., Yu Y. X., Lee T., Watanabe K., Komiya T., Sumiyoshi H., Hashimoto H., Nomoto A. 1991; Identification of mutations that occurred on the genome of Japanese encephalitis virus during the attenuation process. Virus Genes 5:95–109 [CrossRef]
    [Google Scholar]
  2. Allison S. L., Schalich J., Stiasny K., Mandl C. W., Kunz C., Heinz F. X. 1995; Oligomeric rearrangement of tick-borne encephalitis virus envelope proteins induced by an acidic pH. J Virol 69:695–700
    [Google Scholar]
  3. Arroyo J., Guirakhoo F., Fenner S., Zhang Z.-X., Monath T. P., Chambers T. J. 2001; Molecular basis for attenuation of neurovirulence of a yellow fever virus/Japanese encephalitis virus chimera vaccine (ChimeriVax-JE). J Virol 75:934–942 [CrossRef]
    [Google Scholar]
  4. Chen L.-K., Lin Y.-L., Liao C.-L., Lin C.-G., Huang Y.-L., Yeh C.-T., Lai S.-C., Jan J.-T., Chin C. 1996; Generation and characterization of organ-tropism mutants of Japanese encephalitis virus in vivo and in vitro . Virology 223:79–88 [CrossRef]
    [Google Scholar]
  5. Chen Y., Maguire T., Hileman R. E., Fromm J. R., Esko J. D., Linhardt R. J., Marks R. M. 1997; Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med 3:866–871 [CrossRef]
    [Google Scholar]
  6. Gritsun T. S., Gould E. A. 1998; Development and analysis of a tick-borne encephalitis virus infectious clone using a novel and rapid strategy. J Virol Methods 76:109–120 [CrossRef]
    [Google Scholar]
  7. Gualano R. C., Pryor M. J., Cauchi M. R., Wright P. J., Davidson A. D. 1998; Identification of a major determinant of mouse neurovirulence of dengue virus type 2 using stably cloned genomic-length cDNA. J Gen Virol 79:437–446
    [Google Scholar]
  8. Hasegawa H., Yoshida M., Shiosaka T., Fujita S., Kobayashi Y. 1992; Mutations in the envelope protein of Japanese encephalitis virus affect entry into cultured cells and virulence in mice. Virology 191:158–165 [CrossRef]
    [Google Scholar]
  9. Hayasaka D., Gritsun T. S., Yoshii K. 7 other authors 2004; Amino acid changes responsible for attenuation of virus neurovirulence in an infectious cDNA clone of the Oshima strain of Tick-borne encephalitis virus . J Gen Virol 85:1007–1018 [CrossRef]
    [Google Scholar]
  10. Heinz F. X. 1986; Epitope mapping of flavivirus glycoproteins. Adv Virus Res 31:103–168
    [Google Scholar]
  11. Hung S.-L., Lee P.-L., Chen H.-W., Chen L.-K., Kao C.-L., King C.-C. 1999; Analysis of the steps involved in dengue virus entry into host cells. Virology 257:156–167 [CrossRef]
    [Google Scholar]
  12. Hung J.-J., Hsieh M.-T., Young M.-J., Kao C.-L., King C.-C., Chang W. 2004; An external loop region of domain III of dengue virus type 2 envelope protein is involved in serotype-specific binding to mosquito but not mammalian cells. J Virol 78:378–388 [CrossRef]
    [Google Scholar]
  13. Hurrelbrink R. J., McMinn P. C. 2001; Attenuation of Murray Valley encephalitis virus by site-directed mutagenesis of the hinge and putative receptor-binding regions of the envelope protein. J Virol 75:7692–7702 [CrossRef]
    [Google Scholar]
  14. Hurrelbrink R. J., Nestorowicz A., McMinn P. C. 1999; Characterization of infectious Murray Valley encephalitis virus derived from a stably cloned genome-length cDNA. J Gen Virol 80:3115–3125
    [Google Scholar]
  15. Kato T., Miyamoto M., Furusaka A., Date T., Yasui K., Kato J., Matsushima S., Komatsu T., Wakita T. 2003a; Processing of hepatitis C virus core protein is regulated by its C-terminal sequence. J Med Virol 69:357–366 [CrossRef]
    [Google Scholar]
  16. Kato T., Date T., Miyamoto M., Furusaka A., Tokushige K., Mizokami M., Wakita T. 2003b; Efficient replication of the genotype 2a hepatitis C virus subgenomic replicon. Gastroenterology 125:1808–1817 [CrossRef]
    [Google Scholar]
  17. Khromykh A. A., Westaway E. G. 1994; Completion of Kunjin virus RNA sequence and recovery of an infectious RNA transcribed from stably cloned full-length cDNA. J Virol 68:4580–4588
    [Google Scholar]
  18. Kimura-Kuroda J., Yasui K. 1983; Topographical analysis of antigenic determinants on envelope glycoprotein V3 (E) of Japanese encephalitis virus, using monoclonal antibodies. J Virol 45:124–132
    [Google Scholar]
  19. Kimura-Kuroda J., Ichikawa M., Ogata A., Nagashima K., Yasui K. 1993; Specific tropism of Japanese encephalitis virus for developing neurons in primary rat brain culture. Arch Virol 130:477–484 [CrossRef]
    [Google Scholar]
  20. Kinney R. M., Butrapet S., Chang G.-J. J., Tsuchiya K. R., Roehrig J. T., Bhamarapravati N., Gubler D. J. 1997; Construction of infectious cDNA clones for dengue 2 virus: strain 16681 and its attenuated vaccine derivative, strain PDK-53. Virology 230:300–308 [CrossRef]
    [Google Scholar]
  21. Kolaskar A. S., Kulkarni-Kale U. 1999; Prediction of three-dimensional structure and mapping of conformational epitopes of envelope glycoprotein of Japanese encephalitis virus. Virology 261:31–42 [CrossRef]
    [Google Scholar]
  22. Kuhn R. J., Zhang W., Rossmann M. G. 9 other authors 2002; Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108:717–725 [CrossRef]
    [Google Scholar]
  23. Lai C.-J., Zhao B., Hori H., Bray M. 1991; Infectious RNA transcribed from stably cloned full-length cDNA of dengue type 4 virus. Proc Natl Acad Sci U S A 88:5139–5143 [CrossRef]
    [Google Scholar]
  24. Lee E., Lobigs M. 2002; Mechanism of virulence attenuation of glycosaminoglycan-binding variants of Japanese encephalitis virus and Murray Valley encephalitis virus. J Virol 76:4901–4911 [CrossRef]
    [Google Scholar]
  25. Lee E., Hall R. A., Lobigs M. 2004; Common E protein determinants for attenuation of glycosaminoglycan-binding variants of Japanese encephalitis and West Nile viruses. J Virol 78:8271–8280 [CrossRef]
    [Google Scholar]
  26. Lescar J., Roussel A., Wien M. W., Navaza J., Fuller S. D., Wengler G., Wengler G., Rey F. A. 2001; The fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. Cell 105:137–148 [CrossRef]
    [Google Scholar]
  27. Liu H., Chiou S.-S., Chen W.-J. 2004; Differential binding efficiency between the envelope protein of Japanese encephalitis virus variants and heparan sulfate on the cell surface. J Med Virol 72:618–624 [CrossRef]
    [Google Scholar]
  28. Mandl C. W., Guirakhoo F., Holzmann H., Heinz F. X., Kunz C. 1989; Antigenic structure of the flavivirus envelope protein E at the molecular level, using tick-borne encephalitis virus as a model. J Virol 63:564–571
    [Google Scholar]
  29. Mandl C. W., Kroschewski H., Allison S. L., Kofler R., Holzmann H., Meixner T., Heinz F. X. 2001; Adaptation of tick-borne encephalitis virus to BHK-21 cells results in the formation of multiple heparan sulfate binding sites in the envelope protein and attenuation in vivo. J Virol 75:5627–5637 [CrossRef]
    [Google Scholar]
  30. Modis Y., Ogata S., Clements D., Harrison S. C. 2004; Structure of the dengue virus envelope protein after membrane fusion. Nature 427:313–319 [CrossRef]
    [Google Scholar]
  31. Monath T. P., Heinz F. X. 1996; Flaviviruses. In Fields Virology , 3rd edn. pp  961–1034 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia, PA: Lippincott-Raven;
    [Google Scholar]
  32. Monath T. P., Arroyo J., Levenbook I., Zhang Z.-X., Catalan J., Draper K., Guirakhoo F. 2002; Single mutation in the flavivirus envelope protein hinge region increases neurovirulence for mice and monkeys but decreases viscerotropism for monkeys: relevance to development and safety testing of live, attenuated vaccines. J Virol 76:1932–1943 [CrossRef]
    [Google Scholar]
  33. Ni H., Barrett A. D. T. 1998; Attenuation of Japanese encephalitis virus by selection of its mouse brain membrane receptor preparation escape variants. Virology 241:30–36 [CrossRef]
    [Google Scholar]
  34. Nitayaphan S., Grant J. A., Chang G.-J. J., Trent D. W. 1990; Nucleotide sequence of the virulent SA-14 strain of Japanese encephalitis virus and its attenuated vaccine derivative, SA-14-14-2. Virology 177:541–552 [CrossRef]
    [Google Scholar]
  35. Polo S., Ketner G., Levis R., Falgout B. 1997; Infectious RNA transcripts from full-length dengue virus type 2 cDNA clones made in yeast. J Virol 71:5366–5374
    [Google Scholar]
  36. Reed L. J., Muench H. 1938; A simple method of estimating fifty percent endpoints. Am J Hyg 27:493–497
    [Google Scholar]
  37. Rey F. A., Heinz F. X., Mandl C., Kunz C., Harrison S. C. 1995; The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature 375:291–298 [CrossRef]
    [Google Scholar]
  38. Rice C. M., Grakoui A., Galler R., Chambers T. J. 1989; Transcription of infectious yellow fever virus RNA from full-length cDNA templates produced by in vitro ligation. New Biol 1:285–296
    [Google Scholar]
  39. Shi P.-Y., Tilgner M., Lo M. K., Kent K. A., Bernard K. A. 2002; Infectious cDNA clone of the epidemic West Nile virus from New York City. J Virol 76:5847–5856 [CrossRef]
    [Google Scholar]
  40. Stiasny K., Allison S. L., Marchler-Bauer A., Kunz C., Heinz F. X. 1996; Structural requirements for low-pH-induced rearrangements in the envelope glycoprotein of tick-borne encephalitis virus. J Virol 70:8142–8147
    [Google Scholar]
  41. Stiasny K., Allison S. L., Schalich J., Heinz F. X. 2002; Membrane interactions of the tick-borne encephalitis virus fusion protein E at low pH. J Virol 76:3784–3790 [CrossRef]
    [Google Scholar]
  42. Sumiyoshi H., Mori C., Fuke I., Morita K., Kuhara S., Kondou J., Kikuchi Y., Nagamatu H., Igarashi A. 1987; Complete nucleotide sequence of the Japanese encephalitis virus genome RNA. Virology 161:497–510 [CrossRef]
    [Google Scholar]
  43. Sumiyoshi H., Hoke C. H., Trent D. W. 1992; Infectious Japanese encephalitis virus RNA can be synthesized from in vitro-ligated cDNA templates. J Virol 66:5425–5431
    [Google Scholar]
  44. Sumiyoshi H., Tignor G. H., Shope R. E. 1995; Characterization of a highly attenuated Japanese encephalitis virus generated from molecularly cloned cDNA. J Infect Dis 171:1144–1151 [CrossRef]
    [Google Scholar]
  45. Wang T., Town T., Alexopoulou L., Anderson J. F., Fikrig E., Flavell R. A. 2004; Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10:1366–1373 [CrossRef]
    [Google Scholar]
  46. Whitehead S. S., Falgout B., Hanley K. A., Blaney J. E. Jr, Markoff L., Murphy B. R. 2003; A live, attenuated dengue virus type 1 vaccine candidate with a 30-nucleotide deletion in the 3′ untranslated region is highly attenuated and immunogenic in monkeys. J Virol 77:1653–1657 [CrossRef]
    [Google Scholar]
  47. Wilcox C. L., Smith R. L., Freed C. R., Johnson E. M. Jr 1990; Nerve growth factor-dependence of herpes simplex virus latency in peripheral sympathetic and sensory neurons in vitro . J Neurosci 10:1268–1275
    [Google Scholar]
  48. Yamshchikov V., Mishin V., Cominelli F. 2001; A new strategy in design of (+)RNA virus infectious clones enabling their stable propagation in E. coli . Virology281272–280 [CrossRef]
    [Google Scholar]
  49. Yasui K. 2002; Neuropathogenesis of Japanese encephalitis virus. J Neurovirol 8 (Suppl. 2):112–114 [CrossRef]
    [Google Scholar]
  50. Yoshii K., Konno A., Goto A. 7 other authors 2004; Single point mutation in tick-borne encephalitis virus prM protein induces a reduction of virus particle secretion. J Gen Virol 85:3049–3058 [CrossRef]
    [Google Scholar]
  51. Yu Y. X., Wu P. F., Ao J., Liu L. H., Li H. M. 1981; Selection of a better immunogenic and highly attenuated live vaccine virus strain of JE. I. Some biological characteristics of SA14-14-2 mutant. Chin J Microbiol Immunol 1:77–84
    [Google Scholar]
  52. Yun S.-I., Kim S.-Y., Rice C. M., Lee Y.-M. 2003; Development and application of a reverse genetics system for Japanese encephalitis virus. J Virol 77:6450–6465 [CrossRef]
    [Google Scholar]
  53. Zhang W., Chipman P. R., Corver J. & 7 other authors (2003a). Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat Struct Biol 10:907–912 [CrossRef]
    [Google Scholar]
  54. Zhang Y., Corver J., Chipman P. R. & 7 other authors (2003b). Structures of immature flavivirus particles. EMBO J 22:2604–2613 [CrossRef]
    [Google Scholar]
  55. Zhao Z., Wakita T., Yasui K. 2003; Inoculation of plasmids encoding Japanese encephalitis virus PrM-E proteins with colloidal gold elicits a protective immune response in BALB/c mice. J Virol 77:4248–4260 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80638-0
Loading
/content/journal/jgv/10.1099/vir.0.80638-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error