1887

Abstract

(RPV) is a morbillivirus, related closely to the human pathogen (MV). Although cell culture-adapted strains of RPV can infect many kinds of cell from different hosts, one such strain has previously been shown to have a detectable preference for cells expressing the MV receptor CD150 (SLAM), a protein found only on certain types of activated T cells, B cells and dendritic cells. Here, it is shown that the wild-type, virulent parent of the most common vaccine strain of RPV requires CD150 as a receptor, whilst the cell culture-adapted vaccine strain has acquired the ability to use heparan sulphate as an alternative receptor.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80836-0
2005-06-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/6/vir861753.html?itemId=/content/journal/jgv/10.1099/vir.0.80836-0&mimeType=html&fmt=ahah

References

  1. Andres O., Obojes K., Kim K. S., ter Meulen V., Schneider-Schaulies J. 2003; CD46- and CD150-independent endothelial cell infection with wild-type measles viruses. J Gen Virol 84:1189–1197 [CrossRef]
    [Google Scholar]
  2. Baranowski E., Sevilla N., Verdaguer N., Ruiz-Jarabo C. M., Beck E., Domingo E. 1998; Multiple virulence determinants of foot-and-mouth disease virus in cell culture. J Virol 72:6362–6372
    [Google Scholar]
  3. Baron M. D., Barrett T. 1997; Rescue of rinderpest virus from cloned cDNA. J Virol 71:1265–1271
    [Google Scholar]
  4. Baron M. D., Barrett T. 2000; Rinderpest viruses lacking the C and V proteins show specific defects in growth and transcription of viral RNAs. J Virol 74:2603–2611 [CrossRef]
    [Google Scholar]
  5. Baron M. D., Foster-Cuevas M., Baron J., Barrett T. 1999; Expression in cattle of epitopes of a heterologous virus using a recombinant rinderpest virus. J Gen Virol 80:2031–2039
    [Google Scholar]
  6. Baron M. D., Banyard A. C., Parida S., Barrett T. 2005; The Plowright vaccine strain of Rinderpest virus has attenuating mutations in most genes. J Gen Virol 86:1093–1101 [CrossRef]
    [Google Scholar]
  7. Bose S., Banerjee A. K. 2002; Role of heparan sulfate in human parainfluenza virus type 3 infection. Virology 298:73–83 [CrossRef]
    [Google Scholar]
  8. Cocks B. G., Chang C.-C. J., Carballido J., Yssel H., de Vries J. E., Aversa G. 1995; A novel receptor involved in T-cell activation. Nature 376:260–263 [CrossRef]
    [Google Scholar]
  9. Dörig R. E., Marcil A., Chopra A., Richardson C. D. 1993; The human CD46 molecule is a receptor for measles virus (Edmonston strain. Cell 75:295–305 [CrossRef]
    [Google Scholar]
  10. Erlenhoefer C., Wurzer W. J., Löffler S., Schneider-Schaulies S., ter Meulen V., Schneider-Schaulies J. 2001; CD150 (SLAM) is a receptor for measles virus but is not involved in viral contact-mediated proliferation inhibition. J Virol 75:4499–4505 [CrossRef]
    [Google Scholar]
  11. Fry E. E., Lea S. M., Jackson T. 7 other authors 1999; The structure and function of a foot-and-mouth disease virus-oligosaccharide receptor complex. EMBO J 18:543–554 [CrossRef]
    [Google Scholar]
  12. Galbraith S. E., Tiwari A., Baron M. D., Lund B. T., Barrett T., Cosby S. L. 1998; Morbillivirus downregulation of CD46. J Virol 72:10292–10297
    [Google Scholar]
  13. Goodfellow I. G., Sioofy A. B., Powell R. M., Evans D. J. 2001; Echoviruses bind heparan sulfate at the cell surface. J Virol 75:4918–4921 [CrossRef]
    [Google Scholar]
  14. Hsu E. C., Iorio C., Sarangi F., Khine A. A., Richardson C. D. 2001; CDw150(SLAM) is a receptor for a lymphotropic strain of measles virus and may account for the immunosuppressive properties of this virus. Virology 279:9–21 [CrossRef]
    [Google Scholar]
  15. Jackson T., Ellard F. M., Ghazaleh R. A., Brookes S. M., Blakemore W. E., Corteyn A. H., Stuart D. I., Newman J. W. I., King A. M. Q. 1996; Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulfate. J Virol 70:5282–5287
    [Google Scholar]
  16. Klimstra W. B., Ryman K. D., Johnston R. E. 1998; Adaptation of Sindbis virus to BHK cells selects for use of heparan sulfate as an attachment receptor. J Virol 72:7357–7366
    [Google Scholar]
  17. Kobune F., Sakata H., Sugiyama M., Sugiura A. 1991; B95a, a marmoset lymphoblastoid cell line, as a sensitive host for rinderpest virus. J Gen Virol 72:687–692 [CrossRef]
    [Google Scholar]
  18. Lidholt K., Weinke J. L., Kiser C. S., Lugemwa F. N., Bame K. J., Cheifetz S., Massagué J., Lindahl U., Esko J. D. 1992; A single mutation affects both N -acetylglucosaminyltransferase and glucuronosyltransferase activities in a Chinese hamster ovary cell mutant defective in heparan sulfate biosynthesis. Proc Natl Acad Sci U S A 89:2267–2271 [CrossRef]
    [Google Scholar]
  19. Mandl C. W., Kroschewski H., Allison S. L., Kofler R., Holzmann H., Meixner T., Heinz F. X. 2001; Adaptation of tick-borne encephalitis virus to BHK-21 cells results in the formation of multiple heparan sulfate binding sites in the envelope protein and attenuation in vivo. J Virol 75:5627–5637 [CrossRef]
    [Google Scholar]
  20. Massé N., Ainouze M., Néel B., Wild T. F., Buckland R., Langedijk J. P. M. 2004; Measles virus (MV) hemagglutinin: evidence that attachment sites for MV receptors SLAM and CD46 overlap on the globular head. J Virol 78:9051–9063 [CrossRef]
    [Google Scholar]
  21. Miyajima N., Takeda M., Tashiro M., Hashimoto K., Yanagi Y., Nagata K., Takeuchi K. 2004; Cell tropism of wild-type measles virus is affected by amino acid substitutions in the P, V and M proteins, or by a truncation in the C protein. J Gen Virol 85:3001–3006 [CrossRef]
    [Google Scholar]
  22. Moeller K., Duffy I., Duprex P. 7 other authors 2001; Recombinant measles viruses expressing altered hemagglutinin (H) genes: functional separation of mutations determining H antibody escape from neurovirulence. J Virol 75:7612–7620 [CrossRef]
    [Google Scholar]
  23. Naniche D., Variorkrishnan G., Cervoni F., Wild T. F., Rossi B., Rabourdin-Combe C., Gerlier D. 1993; Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol 67:6025–6032
    [Google Scholar]
  24. Ohgimoto S., Ohgimoto K., Niewiesk S. 7 other authors 2001; The haemagglutinin protein is an important determinant of measles virus tropism for dendritic cells in vitro . J Gen Virol 82:1835–1844
    [Google Scholar]
  25. Plowright W., Ferris R. D. 1962; Studies with rinderpest virus in tissue culture. The use of attenuated culture virus as a vaccine for cattle. Res Vet Sci 3:172–182
    [Google Scholar]
  26. Rossiter P. B., Herniman K. A. J., Wamwayi H. M. 1992; Improved isolation of rinderpest virus in transformed bovine T lymphoblast cell lines. Res Vet Sci 53:11–18 [CrossRef]
    [Google Scholar]
  27. Seki F., Ono N., Yamaguchi R., Yanagi Y. 2003; Efficient isolation of wild strains of canine distemper virus in Vero cells expressing canine SLAM (CD150) and their adaptability to marmoset B95a cells. J Virol 77:9943–9950 [CrossRef]
    [Google Scholar]
  28. Summerford C., Samulski R. J. 1998; Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol 72:1438–1445
    [Google Scholar]
  29. Takeuchi K., Miyajima N., Nagata N., Takeda M., Tashiro M. 2003; Wild-type measles virus induces large syncytium formation in primary human small airway epithelial cells by a SLAM(CD150)-independent mechanism. Virus Res 94:11–16 [CrossRef]
    [Google Scholar]
  30. Tatsuo H., Ono N., Tanaka K., Yanagi Y. 2000; SLAM (CDw150) is a cellular receptor for measles virus. Nature 406:893–897 [CrossRef]
    [Google Scholar]
  31. Tatsuo H., Ono N., Yanagi Y. 2001; Morbilliviruses use signaling lymphocyte activation molecules (CD150) as cellular receptors. J Virol 75:5842–5850 [CrossRef]
    [Google Scholar]
  32. Vongpunsawad S., Oezgun N., Braun W., Cattaneo R. 2004; Selectively receptor-blind measles viruses: identification of residues necessary for SLAM- or CD46-induced fusion and their localization on a new hemagglutinin structural model. J Virol 78:302–313 [CrossRef]
    [Google Scholar]
  33. von Messling V., Zimmer G., Herrler G., Haas L., Cattaneo R. 2001; The hemagglutinin of canine distemper virus determines tropism and cytopathogenicity. J Virol 75:6418–6427 [CrossRef]
    [Google Scholar]
  34. Walsh E. P., Baron M. D., Rennie L. F., Monaghan P., Anderson J., Barrett T. 2000; Recombinant rinderpest vaccines expressing membrane-anchored proteins as genetic markers: evidence of exclusion of marker protein from the virus envelope. J Virol 74:10165–10175 [CrossRef]
    [Google Scholar]
  35. Wohlsein P., Wamwayi H. M., Trautwein G., Pohlenz J., Liess B., Barrett T. 1995; Pathomorphological and immunohistological findings in cattle experimentally infected with rinderpest virus isolates of different pathogenicity. Vet Microbiol 44:141–149 [CrossRef]
    [Google Scholar]
  36. Yamanaka M., Hsu D., Crisp T., Dale B., Grubman M., Yilma T. 1988; Cloning and sequence analysis of the hemagglutinin gene of the virulent strain of rinderpest virus. Virology 166:251–253 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80836-0
Loading
/content/journal/jgv/10.1099/vir.0.80836-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error