1887

Abstract

Herpes simplex virus type 1 (HSV-1) is able to establish latency in infected individuals. In order to characterize potential new immune-escape mechanisms, mature dendritic cells (DCs) were infected with HSV-1 and total cellular RNA was isolated from infected and mock-infected populations at different time points. RNA profiling on Affymetrix Human Genome U133A arrays demonstrated a dramatic downregulation of the migration-mediating surface molecules CCR7 and CXCR4, an observation that was further confirmed by RT-PCR and fluorescence-activated cell sorting analyses. Furthermore, migration assays revealed that, upon infection of mature DCs, CCR7- and CXCR4-mediated migration towards the corresponding CCL19 and CXCL12 chemokine gradients was strongly reduced. It is noteworthy that the infection of immature DCs with HSV-1 prior to maturation led to a failure of CCR7 and CXCR4 upregulation during DC maturation and, as a consequence, also induced a block in their migratory capacity. Additional migration assays with a Δvhs mutant virus lacking the virion host shutoff () gene, which is known to degrade cellular mRNAs, suggested a vhs-independent mechanism. These results indicate that HSV-1-infected mature DCs are limited in their capacity to migrate to secondary lymphoid organs, the areas of antigen presentation and T-cell stimulation, thus inhibiting an antiviral immune response. This represents a novel, previously unrecognized mechanism for HSV-1 to escape the human immune system.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80852-0
2005-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/6/vir861645.html?itemId=/content/journal/jgv/10.1099/vir.0.80852-0&mimeType=html&fmt=ahah

References

  1. Ahn K., Meyer T. H., Uebel S., Sempe P., Djaballah H., Yang Y., Peterson P. A., Fruh K., Tampe R. 1996; Molecular mechanism and species specificity of TAP inhibition by herpes simplex virus ICP47. EMBO J 15:3247–3255
    [Google Scholar]
  2. Aliprantis A. O., Yang R.-B., Mark M. R., Suggett S., Devaux B., Radolf J. D., Klimpel G. R., Godowski P., Zychlinsky A. 1999; Cell activation and apoptosis by bacterial lipoproteins through Toll-like receptor-2. Science 285:736–739 [CrossRef]
    [Google Scholar]
  3. Banchereau J., Steinman R. M. 1998; Dendritic cells and the control of immunity. Nature 392:245–252 [CrossRef]
    [Google Scholar]
  4. Becker Y. 2002; Herpes simplex virus evolved to use the human defense mechanisms to establish a lifelong infection in neurons – a review and hypothesis. Virus Genes 24:187–196 [CrossRef]
    [Google Scholar]
  5. Becker Y. 2003; Immunological and regulatory functions of uninfected and virus infected immature and mature subtypes of dendritic cells – a review. Virus Genes 26:119–130 [CrossRef]
    [Google Scholar]
  6. Björck P. 2004; Dendritic cells exposed to herpes simplex virus in vivo do not produce IFN- α after rechallenge with virus in vitro and exhibit decreased T cell alloreactivity. J Immunol 172:5396–5404 [CrossRef]
    [Google Scholar]
  7. Brightbill H. D., Libraty D. H., Krutzik S. R. 11 other authors 1999; Host defense mechanisms triggered by microbial lipoproteins through Toll-like receptors. Science 285:732–736 [CrossRef]
    [Google Scholar]
  8. Cartier A., Komai T., Masucci M. G. 2003; The Us3 protein kinase of herpes simplex virus 1 blocks apoptosis and induces phosphorylation of the Bcl-2 family member Bad. Exp Cell Res 291:242–250 [CrossRef]
    [Google Scholar]
  9. Cavanagh L. L., Von Andrian U. H. 2002; Travellers in many guises: the origins and destinations of dendritic cells. Immunol Cell Biol 80:448–462 [CrossRef]
    [Google Scholar]
  10. Cebulla C. M., Miller D. M., Zhang Y., Rahill B. M., Zimmerman P., Robinson J. M., Sedmak D. D. 2002; Human cytomegalovirus disrupts constitutive MHC class II expression. J Immunol 169:167–176 [CrossRef]
    [Google Scholar]
  11. Cella M., Salio M., Sakakibara Y., Langen H., Julkunen I., Lanzavecchia A. 1999; Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. J Exp Med 189:821–829 [CrossRef]
    [Google Scholar]
  12. Coffin R. S., Maclean A. R., Latchman D. S., Brown S. M. 1996; Gene delivery to the central and peripheral nervous systems of mice using HSV1 ICP34.5 deletion mutant vectors. Gene Ther 3:886–891
    [Google Scholar]
  13. Daheshia M., Feldman L. T., Rouse B. T. 1998; Herpes simplex virus latency and the immune response. Curr Opin Microbiol 1:430–435 [CrossRef]
    [Google Scholar]
  14. Delgado E., Finkel V., Baggiolini M., Mackay C. R., Steinman R. M., Granelli-Piperno A. 1998; Mature dendritic cells respond to SDF-1, but not to several beta-chemokines. Immunobiology 198:490–500 [CrossRef]
    [Google Scholar]
  15. Dwyer D. E., Cunningham A. L. 2002; 10: herpes simplex and varicella-zoster virus infections. Med J Aust 177:267–273
    [Google Scholar]
  16. Engelmayer J., Larsson M., Subklewe M., Chahroudi A., Cox W. I., Steinman R. M., Bhardwaj N. 1999; Vaccinia virus inhibits the maturation of human dendritic cells: a novel mechanism of immune evasion. J Immunol 163:6762–6768
    [Google Scholar]
  17. Everly D. N. Jr, Feng P., Mian I. S., Read G. S. 2002; mRNA degradation by the virion host shutoff (Vhs) protein of herpes simplex virus: genetic and biochemical evidence that Vhs is a nuclease. J Virol 76:8560–8571 [CrossRef]
    [Google Scholar]
  18. Förster R., Schubel A., Breitfeld D., Kremmer E., Renner-Müller I., Wolf E., Lipp M. 1999; CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99:23–33 [CrossRef]
    [Google Scholar]
  19. Fugier-Vivier I., Servet-Delprat C., Rivailler P., Rissoan M.-C., Liu Y.-J., Rabourdin-Combe C. 1997; Measles virus suppresses cell-mediated immunity by interfering with the survival and functions of dendritic and T cells. J Exp Med 186:813–823 [CrossRef]
    [Google Scholar]
  20. Galvan V., Roizman B. 1998; Herpes simplex virus 1 induces and blocks apoptosis at multiple steps during infection and protects cells from exogenous inducers in a cell-type-dependent manner. Proc Natl Acad Sci U S A 95:3931–3936 [CrossRef]
    [Google Scholar]
  21. Goldsmith K., Chen W., Johnson D. C., Hendricks R. L. 1998; Infected cell protein (ICP)47 enhances herpes simplex virus neurovirulence by blocking the CD8+ T cell response. J Exp Med 187:341–348 [CrossRef]
    [Google Scholar]
  22. Gunn M. D. 2003; Chemokine mediated control of dendritic cell migration and function. Semin Immunol 15:271–276 [CrossRef]
    [Google Scholar]
  23. Gunn M. D., Kyuwa S., Tam C., Kakiuchi T., Matsuzawa A., Williams L. T., Nakano H. 1999; Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J Exp Med 189:451–460 [CrossRef]
    [Google Scholar]
  24. Hagglund R., Roizman B. 2004; Role of ICP0 in the strategy of conquest of the host cell by herpes simplex virus 1. J Virol 78:2169–2178 [CrossRef]
    [Google Scholar]
  25. Harris N. L., Ronchese F. 1999; The role of B7 costimulation in T-cell immunity. Immunol Cell Biol 77:304–311 [CrossRef]
    [Google Scholar]
  26. Hengel H., Lindner M., Wagner H., Heeg K. 1987; Frequency of herpes simplex virus-specific murine cytotoxic T lymphocyte precursors in mitogen- and antigen-driven primary in vitro T cell responses. J Immunol 139:4196–4202
    [Google Scholar]
  27. Hill A., Jugovic P., York I., Russ G., Bennink J., Yewdell J., Ploegh H., Johnson D. 1995; Herpes simplex virus turns off the TAP to evade host immunity. Nature 375:411–415 [CrossRef]
    [Google Scholar]
  28. Jenne L., Hauser C., Arrighi J.-F., Saurat J.-H., Hügin A. W. 2000; Poxvirus as a vector to transduce human dendritic cells for immunotherapy: abortive infection but reduced APC function. Gene Ther 7:1575–1583 [CrossRef]
    [Google Scholar]
  29. Jenne L., Thumann P., Steinkasserer A. 2001; Interaction of large DNA viruses with dendritic cells. Immunobiology 204:639–648 [CrossRef]
    [Google Scholar]
  30. Kast W. M., Boog C. J., Roep B. O., Voordouw A. C., Melief C. J. 1988; Failure or success in the restoration of virus-specific cytotoxic T lymphocyte response defects by dendritic cells. J Immunol 140:3186–3193
    [Google Scholar]
  31. Kellermann S.-A., Hudak S., Oldham E. R., Liu Y.-J., McEvoy L. M. 1999; The CC chemokine receptor-7 ligands 6Ckine and macrophage inflammatory protein-3 β are potent chemoattractants for in vitro- and in vivo-derived dendritic cells. J Immunol 162:3859–3864
    [Google Scholar]
  32. Knight S. C., Patterson S. 1997; Bone marrow-derived dendritic cells, infection with human immunodeficiency virus, and immunopathology. Annu Rev Immunol 15:593–615 [CrossRef]
    [Google Scholar]
  33. Kobelt D., Lechmann M., Steinkasserer A. 2003; The interaction between dendritic cells and herpes simplex virus-1. Curr Top Microbiol Immunol 276:145–161
    [Google Scholar]
  34. Kruse M., Rosorius O., Krätzer F., Stelz G., Kuhnt C., Schuler G., Hauber J., Steinkasserer A. 2000; Mature dendritic cells infected with herpes simplex virus type 1 exhibit inhibited T-cell stimulatory capacity. J Virol 74:7127–7136 [CrossRef]
    [Google Scholar]
  35. Liesegang T. J. 2001; Herpes simplex virus epidemiology and ocular importance. Cornea 20:1–13 [CrossRef]
    [Google Scholar]
  36. Lilley C. E., Groutsi F., Han Z., Palmer J. A., Anderson P. N., Latchman D. S., Coffin R. S. 2001; Multiple immediate-early gene-deficient herpes simplex virus vectors allowing efficient gene delivery to neurons in culture and widespread gene delivery to the central nervous system in vivo. J Virol 75:4343–4356 [CrossRef]
    [Google Scholar]
  37. Lin C.-L., Suri R. M., Rahdon R. A., Austyn J. M., Roake J. A. 1998; Dendritic cell chemotaxis and transendothelial migration are induced by distinct chemokines and are regulated on maturation. Eur J Immunol 28:4114–4122 [CrossRef]
    [Google Scholar]
  38. Ludewig B., Ehl S., Karrer U., Odermatt B., Hengartner H., Zinkernagel R. M. 1998; Dendritic cells efficiently induce protective antiviral immunity. J Virol 72:3812–3818
    [Google Scholar]
  39. Mikloska Z., Bosnjak L., Cunningham A. L. 2001; Immature monocyte-derived dendritic cells are productively infected with herpes simplex virus type 1. J Virol 75:5958–5964 [CrossRef]
    [Google Scholar]
  40. Mossman K. L., Macgregor P. F., Rozmus J. J., Goryachev A. B., Edwards A. M., Smiley J. R. 2001; Herpes simplex virus triggers and then disarms a host antiviral response. J Virol 75:750–758 [CrossRef]
    [Google Scholar]
  41. Moutaftsi M., Brennan P., Spector S. A., Tabi Z. 2004; Impaired lymphoid chemokine-mediated migration due to a block on the chemokine receptor switch in human cytomegalovirus-infected dendritic cells. J Virol 78:3046–3054 [CrossRef]
    [Google Scholar]
  42. Mueller S. N., Jones C. M., Smith C. M., Heath W. R., Carbone F. R. 2002; Rapid cytotoxic T lymphocyte activation occurs in the draining lymph nodes after cutaneous herpes simplex virus infection as a result of early antigen presentation and not the presence of virus. J Exp Med 195:651–656 [CrossRef]
    [Google Scholar]
  43. Müller D. B., Raftery M. J., Kather A., Giese T., Schönrich G. 2004; Frontline: induction of apoptosis and modulation of c-FLIPL and p53 in immature dendritic cells infected with herpes simplex virus. Eur J Immunol 34:941–951 [CrossRef]
    [Google Scholar]
  44. Nonacs R., Humborg C., Tam J. P., Steinman R. M. 1992; Mechanisms of mouse spleen dendritic cell function in the generation of influenza-specific, cytolytic T lymphocytes. J Exp Med 176:519–529 [CrossRef]
    [Google Scholar]
  45. Oroskar A. A., Read G. S. 1989; Control of mRNA stability by the virion host shutoff function of herpes simplex virus. J Virol 63:1897–1906
    [Google Scholar]
  46. Parkinson J., Everett R. D. 2000; Alphaherpesvirus proteins related to herpes simplex virus type 1 ICP0 affect cellular structures and proteins. J Virol 74:10006–10017 [CrossRef]
    [Google Scholar]
  47. Parlato S., Santini S. M., Lapenta C. 7 other authors 2001; Expression of CCR-7, MIP-3 β , and Th-1 chemokines in type I IFN-induced monocyte-derived dendritic cells: importance for the rapid acquisition of potent migratory and functional activities. Blood 98:3022–3029 [CrossRef]
    [Google Scholar]
  48. Pollara G., Speidel K., Samady L., Rajpopat M., McGrath Y., Ledermann J., Coffin R. S., Katz D. R., Chain B. 2003; Herpes simplex virus infection of dendritic cells: balance among activation, inhibition, and immunity. J Infect Dis 187:165–178 [CrossRef]
    [Google Scholar]
  49. Pollara G., Katz D. R., Chain B. M. 2004a; The host response to herpes simplex virus infection. Curr Opin Infect Dis 17:199–203 [CrossRef]
    [Google Scholar]
  50. Pollara G., Jones M., Handley M. E., Rajpopat M., Kwan A., Coffin R. S., Foster G., Chain B., Katz D. R. 2004b; Herpes simplex virus type-1-induced activation of myeloid dendritic cells: the roles of virus cell interaction and paracrine type I IFN secretion. J Immunol 173:4108–4119 [CrossRef]
    [Google Scholar]
  51. Raftery M. J., Schwab M., Eibert S. M., Samstag Y., Walczak H., Schönrich G. 2001; Targeting the function of mature dendritic cells by human cytomegalovirus: a multilayered viral defense strategy. Immunity 15:997–1009 [CrossRef]
    [Google Scholar]
  52. Ridge J. P., Di Rosa F., Matzinger P. 1998; A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393:474–478 [CrossRef]
    [Google Scholar]
  53. Salio M., Cella M., Suter M., Lanzavecchia A. 1999; Inhibition of dendritic cell maturation by herpes simplex virus. Eur J Immunol 29:3245–3253 [CrossRef]
    [Google Scholar]
  54. Sallusto F., Schaerli P., Loetscher P., Schaniel C., Lenig D., Mackay C. R., Qin S., Lanzavecchia A. 1998; Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur J Immunol 28:2760–2769 [CrossRef]
    [Google Scholar]
  55. Samady L., Costigliola E., MacCormac L. 7 other authors; 2003; Deletion of the virion host shutoff protein (vhs) from herpes simplex virus (HSV) relieves the viral block to dendritic cell activation: potential of vhs HSV vectors for dendritic cell-mediated immunotherapy. J Virol 77:3768–3776 [CrossRef]
    [Google Scholar]
  56. Sénéchal B., Boruchov A. M., Reagan J. L., Hart D. N. J., Young J. W. 2004; Infection of mature monocyte-derived dendritic cells with human cytomegalovirus inhibits stimulation of T-cell proliferation via the release of soluble CD83. Blood 103:4207–4215 [CrossRef]
    [Google Scholar]
  57. Shutt D. C., Daniels K. J., Carolan E. J., Hill A. C., Soll D. R. 2000; Changes in the motility, morphology, and F-actin architecture of human dendritic cells in an in vitro model of dendritic cell development. Cell Motil Cytoskeleton 46:200–221 [CrossRef]
    [Google Scholar]
  58. Smiley J. R. 2004; Herpes simplex virus virion host shutoff protein: immune evasion mediated by a viral RNase?. J Virol 78:1063–1068 [CrossRef]
    [Google Scholar]
  59. Sodeik B., Ebersold M. W., Helenius A. 1997; Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus. J Cell Biol 136:1007–1021 [CrossRef]
    [Google Scholar]
  60. Sozzani S., Allavena P., D'Amico G. 7 other authors 1998; Differential regulation of chemokine receptors during dendritic cell maturation: a model for their trafficking properties. J Immunol 161:1083–1086
    [Google Scholar]
  61. Stewart J. A., Reef S. E., Pellett P. E., Corey L., Whitley R. J. 1995; Herpesvirus infections in persons infected with human immunodeficiency virus. Clin Infect Dis 21 (Suppl. 1):S114–S120 [CrossRef]
    [Google Scholar]
  62. Stumpf T. H., Case R., Shimeld C., Easty D. L., Hill T. J. 2002; Primary herpes simplex virus type 1 infection of the eye triggers similar immune responses in the cornea and the skin of the eyelids. J Gen Virol 83:1579–1590
    [Google Scholar]
  63. Taddeo B., Esclatine A., Roizman B. 2002; The patterns of accumulation of cellular RNAs in cells infected with a wild-type and a mutant herpes simplex virus 1 lacking the virion host shutoff gene. Proc Natl Acad Sci U S A 99:17031–17036 [CrossRef]
    [Google Scholar]
  64. Toka F. N., Gierynska M., Rouse B. T. 2003; Codelivery of CCR7 ligands as molecular adjuvants enhances the protective immune response against herpes simplex virus type 1. J Virol 77:12742–12752 [CrossRef]
    [Google Scholar]
  65. Trgovcich J., Johnson D., Roizman B. 2002; Cell surface major histocompatibility complex class II proteins are regulated by the products of the γ 134.5 and UL41 genes of herpes simplex virus 1. J Virol 76:6974–6986 [CrossRef]
    [Google Scholar]
  66. Wehrle-Haller B., Imhof B. A. 2003; Actin, microtubules and focal adhesion dynamics during cell migration. Int J Biochem Cell Biol 35:39–50 [CrossRef]
    [Google Scholar]
  67. Whitley R. J., Roizman B. 2001; Herpes simplex virus infections. Lancet 357:1513–1518 [CrossRef]
    [Google Scholar]
  68. York I. A., Roop C., Andrews D. W., Riddell S. R., Graham F. L., Johnson D. C. 1994; A cytosolic herpes simplex virus protein inhibits antigen presentation to CD8+ T lymphocytes. Cell 77:525–535 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80852-0
Loading
/content/journal/jgv/10.1099/vir.0.80852-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error