1887

Abstract

Severe acute respiratory syndrome coronavirus (SARS-CoV) contains a single spike (S) protein, which binds to its receptor, angiotensin-converting enzyme 2 (ACE2), induces membrane fusion and serves as a neutralizing antigen. A SARS-CoV-S protein-bearing vesicular stomatitis virus (VSV) pseudotype using the VSVΔG* system was generated. Partial deletion of the SARS-CoV-S protein cytoplasmic domain allowed efficient incorporation into VSV particles and led to the generation of a pseudotype (VSV-SARS-St19) at high titre. Green fluorescent protein expression was demonstrated as early as 7 h after infection of Vero E6 cells with VSV-SARS-St19. VSV-SARS-St19 was neutralized by anti-SARS-CoV antibody and soluble ACE2, and its infection was blocked by treatment of Vero E6 cells with anti-ACE2 antibody. These results indicated that VSV-SARS-St19 infection is mediated by SARS-CoV-S protein in an ACE2-dependent manner. VSV-SARS-St19 will be useful for analysing the function of SARS-CoV-S protein and for developing rapid methods of detecting neutralizing antibodies specific for SARS-CoV infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80955-0
2005-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/8/vir862269.html?itemId=/content/journal/jgv/10.1099/vir.0.80955-0&mimeType=html&fmt=ahah

References

  1. Drosten C., Gunther S., Preiser W. 23 other authors 2003; Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348:1967–1976 [CrossRef]
    [Google Scholar]
  2. Fouchier R. A., Kuiken T., Schutten M. 7 other authors 2003; Aetiology: Koch's postulates fulfilled for SARS virus. Nature 423:240 [CrossRef]
    [Google Scholar]
  3. Giroglou T., Cinatl J. Jr, Rabenau H., Drosten C., Schwalbe H., Doerr H. W., von Laer D. 2004; Retroviral vectors pseudotyped with severe acute respiratory syndrome coronavirus S protein. J Virol 78:9007–9015 [CrossRef]
    [Google Scholar]
  4. Hofmann H., Geier M., Marzi A., Krumbiegel M., Peipp M., Fey G. H., Gramberg T., Pohlmann S. 2004; Susceptibility to SARS coronavirus S protein-driven infection correlates with expression of angiotensin converting enzyme 2 and infection can be blocked by soluble receptor. Biochem Biophys Res Commun 319:1216–1221 [CrossRef]
    [Google Scholar]
  5. Huang L., Sexton D. J., Skogerson K. 13 other authors 2003; Novel peptide inhibitors of angiotensin-converting enzyme 2. J Biol Chem 278:15532–15540 [CrossRef]
    [Google Scholar]
  6. Komatsu T., Suzuki Y., Imai J., Sugano S., Hida M., Tanigami A., Muroi S., Yamada Y., Hanaoka K. 2002; Molecular cloning, mRNA expression and chromosomal localization of mouse angiotensin-converting enzyme-related carboxypeptidase (mACE2). DNA Seq 13:217–220
    [Google Scholar]
  7. Ksiazek T. G., Erdman D., Goldsmith C. S. 23 other authors 2003; A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348:1953–1966 [CrossRef]
    [Google Scholar]
  8. Li W., Moore M. J., Vasilieva N. 9 other authors 2003; Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426:450–454 [CrossRef]
    [Google Scholar]
  9. Marra M. A., Jones S. J., Astell C. R. 56 other authors 2003; The genome sequence of the SARS-associated coronavirus. Science 300:1399–1404 [CrossRef]
    [Google Scholar]
  10. Matsuura Y., Tani H., Suzuki K. 8 other authors 2001; Characterization of pseudotype VSV possessing HCV envelope proteins. Virology 286:263–275 [CrossRef]
    [Google Scholar]
  11. Miura H. S., Nakagaki K., Taguchi F. 2004; N-terminal domain of the murine coronavirus receptor CEACAM1 is responsible for fusogenic activation and conformational changes of the spike protein. J Virol 78:216–223 [CrossRef]
    [Google Scholar]
  12. Mizutani T., Fukushi S., Saijo M., Kurane I., Morikawa S. 2004; Phosphorylation of p38 MAPK and its downstream targets in SARS coronavirus-infected cells. Biochem Biophys Res Commun 319:1228–1234 [CrossRef]
    [Google Scholar]
  13. Moore M. J., Dorfman T., Li W. 9 other authors 2004; Retroviruses pseudotyped with the severe acute respiratory syndrome coronavirus spike protein efficiently infect cells expressing angiotensin-converting enzyme 2. J Virol 78:10628–10635 [CrossRef]
    [Google Scholar]
  14. Nagata S., Okamoto Y., Inoue T., Ueno Y., Kurata T., Chiba J. 1992; Identification of epitopes associated with different biological activities on the glycoprotein of vesicular stomatitis virus by use of monoclonal antibodies. Arch Virol 127:153–168 [CrossRef]
    [Google Scholar]
  15. Nie Y., Wang P., Shi X. 13 other authors 2004; Highly infectious SARS-CoV pseudotyped virus reveals the cell tropism and its correlation with receptor expression. Biochem Biophys Res Commun 321:994–1000 [CrossRef]
    [Google Scholar]
  16. Ogino M., Ebihara H., Lee B. H., Araki K., Lundkvist A., Kawaoka Y., Yoshimatsu K., Arikawa J. 2003; Use of vesicular stomatitis virus pseudotypes bearing Hantaan or Seoul virus envelope proteins in a rapid and safe neutralization test. Clin Diagn Lab Immunol 10:154–160
    [Google Scholar]
  17. Rota P. A., Oberste M. S., Monroe S. S. 32 other authors 2003; Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300:1394–1399 [CrossRef]
    [Google Scholar]
  18. Saijo M., Qing T., Niikura M., Maeda A., Ikegami T., Sakai K., Prehaud C., Kurane I., Morikawa S. 2002; Immunofluorescence technique using HeLa cells expressing recombinant nucleoprotein for detection of immunoglobulin G antibodies to Crimean-Congo hemorrhagic fever virus. J Clin Microbiol 40:372–375 [CrossRef]
    [Google Scholar]
  19. Simmons G., Reeves J. D., Rennekamp A. J., Amberg S. M., Piefer A. J., Bates P. 2004; Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc Natl Acad Sci U S A 101:4240–4245 [CrossRef]
    [Google Scholar]
  20. Takada A., Robison C., Goto H., Sanchez A., Murti K. G., Whitt M. A., Kawaoka Y. 1997; A system for functional analysis of Ebola virus glycoprotein. Proc Natl Acad Sci U S A 94:14764–14769 [CrossRef]
    [Google Scholar]
  21. Tatsuo H., Okuma K., Tanaka K., Ono N., Minagawa H., Takade A., Matsuura Y., Yanagi Y. 2000; Virus entry is a major determinant of cell tropism of Edmonston and wild-type strains of measles virus as revealed by vesicular stomatitis virus pseudotypes bearing their envelope proteins. J Virol 74:4139–4145 [CrossRef]
    [Google Scholar]
  22. Zelus B. D., Wessner D. R., Williams R. K., Pensiero M. N., Phibbs F. T., deSouza M., Dveksler G. S., Holmes K. V. 1998; Purified, soluble recombinant mouse hepatitis virus receptor, Bgp1b, and Bgp2 murine coronavirus receptors differ in mouse hepatitis virus binding and neutralizing activities. J Virol 72:7237–7244
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80955-0
Loading
/content/journal/jgv/10.1099/vir.0.80955-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error