1887

Abstract

Rabbitpox virus (RPXV) is highly virulent for rabbits and it has long been suspected to be a close relative of vaccinia virus. To explore these questions, the complete coding region of the rabbitpox virus genome was sequenced to permit comparison with sequenced strains of vaccinia virus and other orthopoxviruses. The genome of RPXV strain Utrecht (RPXV-UTR) is 197 731 nucleotides long, excluding the terminal hairpin structures at each end of the genome. The RPXV-UTR genome has 66·5 % A+T content, 184 putative functional genes and 12 fragmented ORF regions that are intact in other orthopoxviruses. The sequence of the RPXV-UTR genome reveals that two RPXV-UTR genes have orthologues in variola virus (VARV; the causative agent of smallpox), but not in vaccinia virus (VACV) strains. These genes are a zinc RING finger protein gene (RPXV-UTR-008) and an ankyrin repeat family protein gene (RPXV-UTR-180). A third gene, encoding a chemokine-binding protein (RPXV-UTR-001/184), is complete in VARV but functional only in some VACV strains. Examination of the evolutionary relationship between RPXV and other orthopoxviruses was carried out using the central 143 kb DNA sequence conserved among all completely sequenced orthopoxviruses and also the protein sequences of 49 gene products present in all completely sequenced chordopoxviruses. The results of these analyses both confirm that RPXV-UTR is most closely related to VACV and suggest that RPXV has not evolved directly from any of the sequenced VACV strains, since RPXV contains a 719 bp region not previously identified in any VACV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81331-0
2005-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/11/2969.html?itemId=/content/journal/jgv/10.1099/vir.0.81331-0&mimeType=html&fmt=ahah

References

  1. Afonso C. L., Tulman E. R., Lu Z., Zsak L., Sandybaev N. T., Kerembekova U. Z., Zaitsev V. L., Kutish G. F., Rock D. L. 2002; The genome of camelpox virus. Virology 295:1–9 [CrossRef]
    [Google Scholar]
  2. Alcami A., Smith G. L. 1992; A soluble receptor for interleukin-1 beta encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection. Cell 71:153–167 [CrossRef]
    [Google Scholar]
  3. Alcami A., Symons J. A., Khanna A., Smith G. L. 1998a; Poxviruses: capturing cytokines and chemokines. Semin Virol 8:419–427 [CrossRef]
    [Google Scholar]
  4. Alcami A., Symons J. A., Collins P. D., Williams T. J., Smith G. L. 1998b; Blockade of chemokine activity by a soluble chemokine binding protein from vaccinia virus. J Immunol 160:624–633
    [Google Scholar]
  5. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  6. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  7. Antoine G., Scheiflinger F., Dorner F., Falkner F. G. 1998; The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses. Virology 244:365–396 [CrossRef]
    [Google Scholar]
  8. Bai C., Sen P., Hofmann K., Ma L., Goebl M., Harper J. W., Elledge S. J. 1996; SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86:263–274 [CrossRef]
    [Google Scholar]
  9. Barry M., Hnatiuk S., Mossman K., Lee S. F., Boshkov L., McFadden G. 1997; The myxoma virus M-T4 gene encodes a novel RDEL-containing protein that is retained within the endoplasmic reticulum and is important for the productive infection of lymphocytes. Virology 239:360–377 [CrossRef]
    [Google Scholar]
  10. Bazin H. 2000 The Eradication of Smallpox London: Academic Press;
    [Google Scholar]
  11. Blanchard T. J., Alcami A., Andrea P., Smith G. L. 1998; Modified vaccinia virus Ankara undergoes limited replication in human cells and lacks several immunomodulatory proteins: implications for use as a human vaccine. J Gen Virol 79:1159–1167
    [Google Scholar]
  12. Boddy M. N., Duprez E., Borden K. L., Freemont P. S. 1997; Surface residue mutations of the PML RING finger domain alter the formation of nuclear matrix-associated PML bodies. J Cell Sci 110:2197–2205
    [Google Scholar]
  13. Bray N., Pachter L. 2004; mavid: constrained ancestral alignment of multiple sequences. Genome Res 14:693–699 [CrossRef]
    [Google Scholar]
  14. Brick D. J., Burke R. D., Schiff L., Upton C. 1998; Shope fibroma virus RING finger protein N1R binds DNA and inhibits apoptosis. Virology 249:42–51 [CrossRef]
    [Google Scholar]
  15. Brudno M., Do C. B., Cooper G. M., Kim M. F., Davydov E., Green E. D., Sidow A., Batzoglou S. 2003; lagan and multi-lagan: efficient tools for large-scale multiple alignment of genomic DNA. Genome Res 13:721–731 [CrossRef]
    [Google Scholar]
  16. Burland T. G. 2000; dnastar's Lasergene sequence analysis software. Methods Mol Biol 132:71–91
    [Google Scholar]
  17. Chen N., Buller R. M., Wall E. M., Upton C. 2000; Analysis of host response modifier ORFs of ectromelia virus, the causative agent of mousepox. Virus Res 66:155–173 [CrossRef]
    [Google Scholar]
  18. Chen N., Danila M. I., Feng Z., Buller R. M., Wang C., Han X., Lefkowitz E. J., Upton C. 2003; The genomic sequence of ectromelia virus, the causative agent of mousepox. Virology 317:165–186 [CrossRef]
    [Google Scholar]
  19. Chen N., Li G., Liszewski M. K. 13 other authors 2005; Virulence differences between monkeypox virus isolates from West Africa and the Congo basin. Virology 340:46–63 [CrossRef]
    [Google Scholar]
  20. Damaso C. R., Esposito J. J., Condit R. C., Moussatche N. 2000; An emergent poxvirus from humans and cattle in Rio de Janeiro State: Cantagalo virus may derive from Brazilian smallpox vaccine. Virology 277:439–449 [CrossRef]
    [Google Scholar]
  21. Drexler I., Heller K., Wahren B., Erfle V., Sutter G. 1998; Highly attenuated modified vaccinia virus Ankara replicates in baby hamster kidney cells, a potential host for virus propagation, but not in various human transformed and primary cells. J Gen Virol 79:347–352
    [Google Scholar]
  22. Ehlers A., Osborne J., Slack S., Roper R. L., Upton C. 2002; Poxvirus Orthologous Clusters (POCs). Bioinformatics 18:1544–1545 [CrossRef]
    [Google Scholar]
  23. Esposito J., Fenner F. 2001; Poxviruses. In Fields Virology , 4th edn. pp  2885–2921 Edited by Knipe D. M., Howley P. M. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  24. FDA 2002; New drug and biological drug products; evidence needed to demonstrate effectiveness of new drugs when human efficacy studies are not ethical or feasible. 21 CFR parts 314 and 601. In Federal Register vol. 67, no. 105: pp  37988–37998 Washington, DC: US Food and Drug Administration;
    [Google Scholar]
  25. Fenner F. 1994 Rabbitpox virus. In Virus Infections of Rodents and Lagomorphs Edited by Osterhaus A. D. M. E. Amsterdam: Elsevier Science;
    [Google Scholar]
  26. Goebel S. J., Johnson G. P., Perkus M. E., Davis S. W., Winslow J. P., Paoletti E. 1990; The complete DNA sequence of vaccinia virus. Virology 179:247–266 [CrossRef]
    [Google Scholar]
  27. Greene H. S. N. 1933; A pandemic of rabbit-pox. Proc Soc Exp Biol Med 30:892–894 [CrossRef]
    [Google Scholar]
  28. Greene H. S. N. 1934a; Rabbit pox. I. Clinical manifestations and cause of disease. J Exp Med 60:427–440 [CrossRef]
    [Google Scholar]
  29. Greene H. S. N. 1934b; Rabbit pox. II. Pathology of the epidemic disease. J Exp Med 60:441–455 [CrossRef]
    [Google Scholar]
  30. Gubser C., Smith G. L. 2002; The sequence of camelpox virus shows it is most closely related to variola virus, the cause of smallpox. J Gen Virol 83:855–872
    [Google Scholar]
  31. Gubser C., Hue S., Kellam P., Smith G. L. 2004; Poxvirus genomes: a phylogenetic analysis. J Gen Virol 85:105–117 [CrossRef]
    [Google Scholar]
  32. Hnatiuk S., Barry M., Zeng W., Liu L., Lucas A., Percy D., McFadden G. 1999; Role of the C-terminal RDEL motif of the myxoma virus M-T4 protein in terms of apoptosis regulation and viral pathogenesis. Virology 263:290–306 [CrossRef]
    [Google Scholar]
  33. Huang X., Zhang J. 1996; Methods for comparing a DNA sequence with a protein sequence. Comput Appl Biosci 12:497–506
    [Google Scholar]
  34. Huang J., Huang Q., Zhou X. 11 other authors 2004; The poxvirus p28 virulence factor is an E3 ubiquitin ligase. J Biol Chem 279:54110–54116 [CrossRef]
    [Google Scholar]
  35. Ichihashi Y., Dales S. 1971; Biogenesis of poxviruses: interrelationship between hemagglutinin production and polykaryocytosis. Virology 46:533–543 [CrossRef]
    [Google Scholar]
  36. Kaiser F. J., Moroy T., Chang G. T., Horsthemke B., Ludecke H. J. 2003; The RING finger protein RNF4, a co-regulator of transcription, interacts with the TRPS1 transcription factor. J Biol Chem 278:38780–38785 [CrossRef]
    [Google Scholar]
  37. Kolhapure R. M., Deolankar R. P., Tupe C. D. 8 other authors 1997; Investigation of buffalopox outbreaks in Maharashtra State during 1992–1996. Indian J Med Res 106:441–446
    [Google Scholar]
  38. Lalani A. S., Ness T. L., Singh R., Harrison J. K., Seet B. T., Kelvin D. J., McFadden G., Moyer R. W. 1998; Functional comparisons among members of the poxvirus T1/35kDa family of soluble CC-chemokine inhibitor glycoproteins. Virology 250:173–184 [CrossRef]
    [Google Scholar]
  39. Lalani A. S., Masters J., Graham K., Liu L., Lucas A., McFadden G. 1999; Role of the myxoma virus soluble CC-chemokine inhibitor glycoprotein, M- T1, during myxoma virus pathogenesis. Virology 256:233–245 [CrossRef]
    [Google Scholar]
  40. Lambert S., Yu H., Prchal J. T., Lawler J., Ruff P., Speicher D., Cheung M. C., Kan Y. W., Palek J. 1990; cDNA sequence for human erythrocyte ankyrin. Proc Natl Acad Sci U S A 87:1730–1734 [CrossRef]
    [Google Scholar]
  41. Ligon B. L. 2004; Monkeypox: a review of the history and emergence in the Western hemisphere. Semin Pediatr Infect Dis 15:280–287 [CrossRef]
    [Google Scholar]
  42. Lovering R., Hanson I. M., Borden K. L. 7 other authors 1993; Identification and preliminary characterization of a protein motif related to the zinc finger. Proc Natl Acad Sci U S A 90:2112–2116 [CrossRef]
    [Google Scholar]
  43. Lux S. E., John K. M., Bennett V. 1990; Analysis of cDNA for human erythrocyte ankyrin indicates a repeated structure with homology to tissue-differentiation and cell-cycle control proteins. Nature 344:36–42 [CrossRef]
    [Google Scholar]
  44. Lyngso C., Bouteiller G., Damgaard C. K., Ryom D., Sanchez-Munoz S., Norby P. L., Bonven B. J., Jorgensen P. 2000; Interaction between the transcription factor SPBP and the positive cofactor RNF4. An interplay between protein binding zinc fingers. J Biol Chem 275:26144–26149 [CrossRef]
    [Google Scholar]
  45. Martinez-Pomares L., Thompson J. P., Moyer R. W. 1995; Mapping and investigation of the role in pathogenesis of the major unique secreted 35-kDa protein of rabbitpox virus. Virology 206:591–600 [CrossRef]
    [Google Scholar]
  46. Massung R. F., Liu L. I., Qi J., Knight J. C., Yuran T. E., Kerlavage A. R., Parsons J. M., Venter J. C., Esposito J. J. 1994; Analysis of the complete genome of smallpox variola major virus strain Bangladesh-1975. Virology 201:215–240 [CrossRef]
    [Google Scholar]
  47. McKelvey T. A., Andrews S. C., Miller S. E., Ray C. A., Pickup D. J. 2002; Identification of the orthopoxvirus p4c gene, which encodes a structural protein that directs intracellular mature virus particles into A-type inclusions. J Virol 76:11216–11225 [CrossRef]
    [Google Scholar]
  48. Moss B. 2001; Poxviruses. In Fields Virology . , 4th edn. pp  2849–2884 Edited by Knipe D. M., Howley P. M. Philadelphia: Lippincott Williams & Wilkins;
  49. Mural R. J. 2000; artemis: a tool for displaying and annotating DNA sequence. Brief Bioinform 1:199–200 [CrossRef]
    [Google Scholar]
  50. Nerenberg B. T., Taylor J., Bartee E., Gouveia K., Barry M., Fruh K. 2005; The poxviral RING protein p28 is a ubiquitin ligase that targets ubiquitin to viral replication factories. J Virol 79:597–601 [CrossRef]
    [Google Scholar]
  51. Reading P. C., Symons J. A., Smith G. L. 2003; A soluble chemokine-binding protein from vaccinia virus reduces virus virulence and the inflammatory response to infection. J Immunol 170:1435–1442 [CrossRef]
    [Google Scholar]
  52. Reynolds M. G., Cono J., Curns A., Holman R. C., Likos A., Regnery R., Treadwell T., Damon I. 2004; Human monkeypox. Lancet Infect Dis 4:604–605 [CrossRef]
    [Google Scholar]
  53. Rice P., Longden I., Bleasby A. 2000; emboss: the European Molecular Biology Open Software Suite. Trends Genet 16:276–277 [CrossRef]
    [Google Scholar]
  54. Ronquist F., Huelsenbeck J. P. 2003; MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574 [CrossRef]
    [Google Scholar]
  55. Senkevich T. G., Koonin E. V., Buller R. M. L. 1994; A poxvirus protein with a RING zinc finger motif is of crucial importance for virulence. Virology 198:118–128 [CrossRef]
    [Google Scholar]
  56. Senkevich T. G., Wolffe E. J., Buller R. M. L. 1995; Ectromelia virus RING finger protein is localized in virus factories and is required for virus replication in macrophages. J Virol 69:4103–4111
    [Google Scholar]
  57. Shchelkunov S. N., Blinov V. M., Sandakhchiev L. S. 1993; Ankyrin-like proteins of variola and vaccinia viruses. FEBS Lett 319:163–165 [CrossRef]
    [Google Scholar]
  58. Shchelkunov S. N., Safronov P. F., Totmenin A. V., Petrov N. A., Ryazankina O. I., Gutorov V. V., Kotwal G. J. 1998; The genomic sequence analysis of the left and right species-specific terminal region of a cowpox virus strain reveals unique sequences and a cluster of intact ORFs for immunomodulatory and host range proteins. Virology 243:432–460 [CrossRef]
    [Google Scholar]
  59. Shchelkunov S. N., Totmenin A. V., Babkin I. V. 11 other authors 2001; Human monkeypox and smallpox viruses: genomic comparison. FEBS Lett 509:66–70 [CrossRef]
    [Google Scholar]
  60. Swofford D. L. 2003 paup*: Phylogenetic analysis using parsimony (* and other methods), version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  61. Upton C., Schiff L., Rice S. A., Dowdeswell T., Yang X., McFadden G. 1994; A poxvirus protein with a RING finger motif binds zinc and localizes in virus factories. J Virol 68:4186–4195
    [Google Scholar]
  62. Upton C., Hogg D., Perrin D., Boone M., Harris N. L. 2000; Viral genome organizer: a system for analyzing complete viral genomes. Virus Res 70:55–64 [CrossRef]
    [Google Scholar]
  63. Upton C., Slack S., Hunter A. L., Ehlers A., Roper R. L. 2003; Poxvirus orthologous clusters: toward defining the minimum essential poxvirus genome. J Virol 77:7590–7600 [CrossRef]
    [Google Scholar]
  64. Westwood J. C., Boulter E. A., Bowen E. T., Maber H. B. 1966; Experimental respiratory infection with poxviruses. I. Clinical virological and epidemiological studies. Br J Exp Pathol 47:453–465
    [Google Scholar]
  65. Wittek R., Moss B. 1980; Tandem repeats within the inverted terminal repetition of vaccinia virus DNA. Cell 21:277–284 [CrossRef]
    [Google Scholar]
  66. Wittek R., Menna A., Schumperli D., Stoffel S., Muller H. K., Wyler R. 1977; Hin dIII and Sst I restriction sites mapped on rabbit poxvirus and vaccinia virus DNA. J Virol 23:669–678
    [Google Scholar]
  67. Wittek R., Cooper J. A., Barbosa E., Moss B. 1980a; Expression of the vaccinia virus genome: analysis and mapping of mRNAs encoded within the inverted terminal repetition. Cell 21:487–493 [CrossRef]
    [Google Scholar]
  68. Wittek R., Barbosa E., Cooper J. A., Garon C. F., Chan H., Moss B. 1980b; Inverted terminal repetition in vaccinia virus DNA encodes early mRNAs. Nature 285:21–25 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81331-0
Loading
/content/journal/jgv/10.1099/vir.0.81331-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error