1887

Abstract

Reassortment among the RNA segments of caused the two most recent human influenza pandemics; recently, reassortment has generated viral genotypes associated with outbreaks of avian H5N1 influenza in Asia and Europe. A statistical analysis has been developed for the systematic identification and characterization of reassortant viruses. The analysis was applied to the genes of the replication complex of 152 avian influenza A viruses isolated between 1966 and 2004 from predominantly terrestrial and domestic aquatic avian species. The results indicated that reassortment among these genes was pervasive throughout this period and throughout both the Eurasian and North American lineages of the virus. Evidence is presented that the circulating genotypes of the replication complex are being replaced continually by novel genotypes created by reassortment. No constraints for coordinated reassortment among genes of the replication complex were evident; rather, reassortment almost always proceeded one segment at a time. A maximum-likelihood estimate of the rate of reassortment was derived. For significantly diverged Asian avian influenza A viruses from the period 1991–2004, it was estimated that the median duration between creation of a new genotype and its next segment reassortment was 3 years. Reassortments that introduced previously unobserved influenza genetic material were detected. These findings point to substantial potential for rapid generation of novel avian influenza A viruses, emphasizing the importance of intensive surveillance of these host species in preparation for a possible pandemic.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81454-0
2006-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/10/2803.html?itemId=/content/journal/jgv/10.1099/vir.0.81454-0&mimeType=html&fmt=ahah

References

  1. Alexander D. J. 2000; A review of avian influenza in different bird species. Vet Microbiol 74:3–13 [CrossRef]
    [Google Scholar]
  2. Area E., Martín-Benito J., Gastaminza P., Torreira E., Valpuesta J. M., Carrascosa J. L., Ortín J. 2004; 3D structure of the influenza virus polymerase complex: localization of subunit domains. Proc Natl Acad Sci U S A 101:308–313 [CrossRef]
    [Google Scholar]
  3. Boon A. C. M., de Mutsert G., Graus Y. M. F., Fouchier R. A. M., Sintnicolaas K., Osterhaus A. D. M. E., Rimmelzwaan G. F. 2002; Sequence variation in a newly identified HLA-B35-restricted epitope in the influenza A virus nucleoprotein associated with escape from cytotoxic T lymphocytes. J Virol 76:2567–2572 [CrossRef]
    [Google Scholar]
  4. Bruno W. J., Socci N. D., Halpern A. L. 2000; Weighted neighbor joining: a likelihood-based approach to distance-based phylogeny reconstruction. Mol Biol Evol 17:189–197 [CrossRef]
    [Google Scholar]
  5. Chare E. R., Gould E. A., Holmes E. C. 2003; Phylogenetic analysis reveals a low rate of homologous recombination in negative-sense RNA viruses. J Gen Virol 84:2691–2703 [CrossRef]
    [Google Scholar]
  6. Choi Y. K., Ozaki H., Webby R. J., Webster R. G., Peiris J. S., Poon L., Butt C., Leung Y. H. C., Guan Y. 2004; Continuing evolution of H9N2 influenza viruses in Southeastern China. J Virol 78:8609–8614 [CrossRef]
    [Google Scholar]
  7. Clements M. L., Subbarao E. K., Fries L. F., Karron R. A., London W. T., Murphy B. R. 1992; Use of single-gene reassortant viruses to study the role of avian influenza A virus genes in attenuation of wild-type human influenza A virus for squirrel monkeys and adult human volunteers. J Clin Microbiol 30:655–662
    [Google Scholar]
  8. Dorman K. S., Kaplan A. H., Sinsheimer J. S. 2002; Bootstrap confidence levels for HIV-1 recombination. J Mol Evol 54:200–209 [CrossRef]
    [Google Scholar]
  9. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5c. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  10. Guan Y., Shortridge K. F., Krauss S., Webster R. G. 1999; Molecular characterization of H9N2 influenza viruses: were they the donors of the “internal” genes of H5N1 viruses in Hong Kong?. Proc Natl Acad Sci U S A 96:9363–9367 [CrossRef]
    [Google Scholar]
  11. Hasegawa M., Kishino H., Yano T. 1985; Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174 [CrossRef]
    [Google Scholar]
  12. Hatchette T. F., Walker D., Johnson C., Baker A., Pryor S. P., Webster R. G. 2004; Influenza A viruses in feral Canadian ducks: extensive reassortment in nature. J Gen Virol 85:2327–2337 [CrossRef]
    [Google Scholar]
  13. Hatta M., Gao P., Halfmann P., Kawaoka Y. 2001; Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293:1840–1842 [CrossRef]
    [Google Scholar]
  14. Hiromoto Y., Yamazaki Y., Fukushima T. & 7 other authors 2000; Evolutionary characterization of the six internal genes of H5N1 human influenza A virus. J Gen Virol 81:1293–1303
    [Google Scholar]
  15. Hoffmann E., Stech J., Leneva I., Krauss S., Scholtissek C., Chin P. S., Peiris M., Shortridge K. F., Webster R. G. 2000; Characterization of the influenza A virus gene pool in avian species in southern China: was H6N1 a derivative or a precursor of H5N1?. J Virol 74:6309–6315 [CrossRef]
    [Google Scholar]
  16. Korber B., Muldoon M., Theiler J., Gao F., Gupta R., Lapedes A., Hahn B. H., Wolinsky S., Bhattacharya T. 2000; Timing the ancestor of the HIV-1 pandemic strains. Science 288:1789–1796 [CrossRef]
    [Google Scholar]
  17. Li K. S., Guan Y., Wang J. & 19 other authors 2004; Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature 430:209–213 [CrossRef]
    [Google Scholar]
  18. Macken C. A., Lu H., Goodman J., Boykin L. 2001; The value of a database in surveillance and vaccine selection. In Options for the Control of Influenza IV p  103–106 Edited by Osterhaus A., Cox N., Hampson A. Amsterdam: Elsevier Science;
    [Google Scholar]
  19. Murphy B. R., Buckler-White A. J., London W. T., Harper J., Tierney E. L., Miller N. T., Reck L. J., Chanock R. M., Hinshaw V. S. 1984; Avian-human reassortant influenza A viruses derived by mating avian and human influenza A viruses. J Infect Dis 150:841–850 [CrossRef]
    [Google Scholar]
  20. Obenauer J. C., Denson J., Mehta P. K. & 14 other authors 2006; Large-scale sequence analysis of avian influenza isolates. Science 311:1576–1580 [CrossRef]
    [Google Scholar]
  21. Rambaut A. 2000; Estimating the rate of molecular evolution: incorporating non-contemporaneous sequences into maximum likelihood phylogenies. Bioinformatics 16:395–399 [CrossRef]
    [Google Scholar]
  22. Reid A. H., Taubenberger J. K., Fanning T. G. 2004; Evidence of an absence: the genetic origins of the 1918 pandemic influenza virus. Nat Rev Microbiol 2:909–914 [CrossRef]
    [Google Scholar]
  23. Scholtissek C., Stech J., Krauss S., Webster R. G. 2002; Cooperation between the hemagglutinin of avian viruses and the matrix protein of human influenza A viruses. J Virol 76:1781–1786 [CrossRef]
    [Google Scholar]
  24. Snyder M. H., Buckler-White A. J., London W. T., Tierney E. L., Murphy B. R. 1987; The avian influenza virus nucleoprotein gene and a specific constellation of avian and human virus polymerase genes each specify attenuation of avian-human influenza A/Pintail/79 reassortant viruses for monkeys. J Virol 61:2857–2863
    [Google Scholar]
  25. Swofford D. 1993 paup*: phylogenetic analysis using parsimony Champaign: University of Illinois;
    [Google Scholar]
  26. Wagner R., Matrosovich M., Klenk H.-D. 2006; Functional balance between haemagglutinin and neuraminidase in influenza virus infections. Rev Med Virol 12:159–166
    [Google Scholar]
  27. Wallensten A., Munster V. J., Elmberg J., Osterhaus A. D. M. E., Fouchier R. A. M., Olsen B. 2005; Multiple gene segment reassortment between Eurasian and American lineages of influenza A virus (H6N2) in Guillemot ( Uria aalge . Arch Virol 150:1685–1692 [CrossRef]
    [Google Scholar]
  28. Wilson A. C., Carlson S. S., White T. J. 1977; Biochemical evolution. Annu Rev Biochem 46:573–639 [CrossRef]
    [Google Scholar]
  29. Yang Z. 1997; paml: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81454-0
Loading
/content/journal/jgv/10.1099/vir.0.81454-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error