1887

Abstract

Human cytomegalovirus (HCMV) immediate-early (IE) transcription is stimulated by virion phosphoprotein pp71, the product of gene UL82. It has previously been shown that pp71 interacts with the cellular protein hDaxx and, in the studies presented here, the significance of this interaction was investigated for HCMV IE gene expression. In co-transfection experiments, the presence of hDaxx increased the transcriptional response of the HCMV major IE promoter (MIEP) to pp71, but it was not possible to determine whether the effect was due to an interaction between the two proteins or to stimulation of hDaxx synthesis by pp71. The use of small interfering RNA (siRNA) in long- and short-term transfection approaches reduced intracellular hDaxx levels to no more than 3 % of normal. Infection of hDaxx-depleted cells with herpes simplex virus recombinants containing the HCMV MIEP revealed significantly greater promoter activity when hDaxx levels were minimal. Similarly, reducing intracellular hDaxx amounts resulted in greater IE gene expression during infection with an HCMV mutant lacking pp71, but had no effect on IE transcription during infection with wild-type HCMV. The results suggest that hDaxx is not important as a positive-acting factor for the stimulation of HCMV IE transcription by pp71. Instead, it appears that hDaxx acts as a repressor of IE gene expression, and it is proposed here that the interaction of pp71 with hDaxx is important to relieve repression and permit efficient initiation of productive replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81566-0
2006-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/5/1113.html?itemId=/content/journal/jgv/10.1099/vir.0.81566-0&mimeType=html&fmt=ahah

References

  1. Baldick C. J. Jr, Marchini A., Patterson C. E., Shenk T. 1997; Human cytomegalovirus tegument protein pp71 (ppUL82) enhances the infectivity of viral DNA and accelerates the infectious cycle. J Virol 71:4400–4408
    [Google Scholar]
  2. Bresnahan W. A., Shenk T. E. 2000; UL82 virion protein activates expression of immediate early viral genes in human cytomegalovirus-infected cells. Proc Natl Acad Sci U S A 97:14506–14511 [CrossRef]
    [Google Scholar]
  3. Bryant L. A., Mixon P., Davidson M., Bannister A. J., Kouzarides T., Sinclair J. H. 2000; The human cytomegalovirus 86-kilodalton major immediate-early protein interacts physically and functionally with histone acetyltransferase P/CAF. J Virol 74:7230–7237 [CrossRef]
    [Google Scholar]
  4. Cantrell S. R., Bresnahan W. A. 2005; Interaction between the human cytomegalovirus UL82 gene product (pp71) and hDaxx regulates immediate-early gene expression and viral replication. J Virol 79:7792–7802 [CrossRef]
    [Google Scholar]
  5. Chang H. Y., Nishitoh H., Yang X., Ichijo H., Baltimore D. 1998; Activation of apoptosis signal-regulating kinase 1 (ASK1) by the adapter protein Daxx. Science 281:1860–1863 [CrossRef]
    [Google Scholar]
  6. Chau N. H., Vanson C. D., Kerry J. A. 1999; Transcriptional regulation of the human cytomegalovirus US11 early gene. J Virol 73:863–870
    [Google Scholar]
  7. Chen L.-Y., Chen J. D. 2003; Daxx silencing sensitizes cells to multiple apoptotic pathways. Mol Cell Biol 23:7108–7121 [CrossRef]
    [Google Scholar]
  8. Davison M.-J., Preston V. G., McGeoch D. J. 1984; Determination of the sequence alteration in the DNA of the herpes simplex virus type 1 temperature-sensitive mutant ts K. J Gen Virol 65:859–863 [CrossRef]
    [Google Scholar]
  9. Dolan A., Cunningham C., Hector R. D. & 12 other authors 2004; Genetic content of wild-type human cytomegalovirus. J Gen Virol 85:1301–1312 [CrossRef]
    [Google Scholar]
  10. Elbashir S. M., Harborth J., Lendeckel W., Yalcin A., Weber K., Tuschl T. 2001; Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498 [CrossRef]
    [Google Scholar]
  11. Everett R. D., Earnshaw W. C., Pluta A. F., Sternsdorf T., Ainsztein A. M., Carmena M., Ruchaud S., Hsu W.-L., Orr A. 1999; A dynamic connection between centromeres and ND10 proteins. J Cell Sci 112:3443–3454
    [Google Scholar]
  12. Greger J. G., Katz R. A., Ishov A. M., Maul G. G., Skalka A. M. 2005; The cellular protein Daxx interacts with avian sarcoma virus integrase and viral DNA to repress viral transcription. J Virol 79:4610–4618 [CrossRef]
    [Google Scholar]
  13. Hofmann H., Sindre H., Stamminger T. 2002; Functional interaction between the pp71 protein of human cytomegalovirus and the PML-interacting protein human Daxx. J Virol 76:5769–5783 [CrossRef]
    [Google Scholar]
  14. Hollenbach A. D., Sublett J. E., McPherson C. J., Grosveld G. 1999; The Pax3–FKHR oncoprotein is unresponsive to the Pax3-associated repressor hDaxx. EMBO J 18:3702–3711 [CrossRef]
    [Google Scholar]
  15. Hollenbach A. D., McPherson C. J., Mientjes E. J., Lyengar R., Grosveld G. 2002; Daxx and histone deacetylase II associate with chromatin through an interaction with core histones and the chromatin-associated protein Dek. J Cell Sci 115:3319–3330
    [Google Scholar]
  16. Homer E. G., Rinaldi A., Nicholl M. J., Preston C. M. 1999; Activation of herpesvirus gene expression by the human cytomegalovirus protein pp71. J Virol 73:8512–8518
    [Google Scholar]
  17. Ishov A. M., Maul G. G. 1996; The periphery of nuclear domain 10 (ND10) as site of DNA virus deposition. J Cell Biol 134:815–826 [CrossRef]
    [Google Scholar]
  18. Ishov A. M., Sotnikov A. G., Negerov D., Vladimirova O. V., Neff N., Kamitani T., Yeh E. T. H., Strauss J. F. III, Maul G. G. 1999; PML is critical for ND10 formation and recruits the PML-interacting protein Daxx to this nuclear structure when modified by SUMO-1. J Cell Biol 147:221–234 [CrossRef]
    [Google Scholar]
  19. Ishov A. M., Vladimirova O. V., Maul G. G. 2002; Daxx-mediated accumulation of human cytomegalovirus tegument protein pp71 at ND10 facilitates initiation of viral infection at these nuclear domains. J Virol 76:7705–7712 [CrossRef]
    [Google Scholar]
  20. Ishov A. M., Vladimirova O. V., Maul G. G. 2004; Heterochromatin and ND10 are cell-cycle regulated and phosphorylation-dependent alternate nuclear sites of the transcription repressor Daxx and SWI/SNF protein ATRX. J Cell Sci 117:3807–3820 [CrossRef]
    [Google Scholar]
  21. Jamieson D. R. S., Robinson L. H., Daksis J. I., Nicholl M. J., Preston C. M. 1995; Quiescent viral genomes in human fibroblasts after infection with herpes simplex virus Vmw65 mutants. J Gen Virol 76:1417–1431 [CrossRef]
    [Google Scholar]
  22. Ko Y.-G., Kang Y.-S., Park H., Seol W., Kim J., Kim T., Park H.-S., Choi E.-J., Kim S. 2001; Apoptosis signal-regulating kinase 1 controls the proapoptotic function of death-associated protein (Daxx) in the cytoplasm. J Biol Chem 276:39103–39106 [CrossRef]
    [Google Scholar]
  23. Li H., Leo C., Zhu J., Wu X., O'Neil J., Park E.-J., Chen J. D. 2000a; Sequestration and inhibition of Daxx-mediated transcriptional repression by PML. Mol Cell Biol 20:1784–1796 [CrossRef]
    [Google Scholar]
  24. Li R., Pei H., Watson D. K., Papas T. S. 2000b; EAP1/Daxx interacts with ETS1 and represses transcriptional activation of ETS1 target genes. Oncogene 19:745–753 [CrossRef]
    [Google Scholar]
  25. Liu B., Stinski M. F. 1992; Human cytomegalovirus contains a tegument protein that enhances transcription from promoters with upstream ATF and AP-1 cis -acting elements. J Virol 66:4434–4444
    [Google Scholar]
  26. Marshall K. R., Rowley K. V., Rinaldi A., Nicholson I. P., Ishov A. M., Maul G. G., Preston C. M. 2002; Activity and intracellular localization of the human cytomegalovirus protein pp71. J Gen Virol 83:1601–1612
    [Google Scholar]
  27. Maul G. G., Ishov A. M., Everett R. D. 1996; Nuclear domain 10 as preexisting potential replication start sites of herpes simplex virus type-1. Virology 217:67–75 [CrossRef]
    [Google Scholar]
  28. Michaelson J. S. 2000; The Daxx enigma. Apoptosis 5:217–220 [CrossRef]
    [Google Scholar]
  29. Michaelson J. S., Leder P. 2003; RNAi reveals anti-apoptotic and transcriptionally repressive activities of DAXX. J Cell Sci 116:345–352 [CrossRef]
    [Google Scholar]
  30. Michaelson J. S., Bader D., Kuo F., Kozak C., Leder P. 1999; Loss of Daxx, a promiscuously interacting protein, results in extensive apoptosis in early mouse development. Genes Dev 13:1918–1923 [CrossRef]
    [Google Scholar]
  31. Nicholl M. J., Preston C. M. 1996; Inhibition of herpes simplex virus type 1 immediate-early gene expression by alpha interferon is not VP16 specific. J Virol 70:6336–6339
    [Google Scholar]
  32. Pluta A. F., Earnshaw W. C., Goldberg I. G. 1998; Interphase-specific association of intrinsic centromere protein CENP-C with HDaxx, a death domain-binding protein implicated in Fas-mediated cell death. J Cell Sci 111:2029–2041
    [Google Scholar]
  33. Preston C. M., McFarlane M. 1998; Cytodifferentiating agents affect the replication of herpes simplex virus type 1 in the absence of functional VP16. Virology 249:418–426 [CrossRef]
    [Google Scholar]
  34. Preston C. M., Nicholl M. J. 1997; Repression of gene expression upon infection of cells with herpes simplex virus type 1 mutants impaired for immediate-early protein synthesis. J Virol 71:7807–7813
    [Google Scholar]
  35. Preston C. M., Nicholl M. J. 2005; Human cytomegalovirus tegument protein pp71 directs long-term gene expression from quiescent herpes simplex virus genomes. J Virol 79:525–535 [CrossRef]
    [Google Scholar]
  36. Preston C. M., Rinaldi A., Nicholl M. J. 1998; Herpes simplex virus type 1 immediate early gene expression is stimulated by inhibition of protein synthesis. J Gen Virol 79:117–124
    [Google Scholar]
  37. Rinaldi A., Marshall K. R., Preston C. M. 1999; A non-cytotoxic herpes simplex virus vector which expresses Cre recombinase directs efficient site specific recombination. Virus Res 65:11–20 [CrossRef]
    [Google Scholar]
  38. Rosenke K., Fortunato E. A. 2004; Bromodeoxyuridine-labeled viral particles as a tool for visualization of the immediate-early events of human cytomegalovirus infection. J Virol 78:7818–7822 [CrossRef]
    [Google Scholar]
  39. Tang Q., Maul G. G. 2003; Mouse cytomegalovirus immediate-early protein 1 binds with host cell repressors to relieve suppressive effects on viral transcription and replication during lytic infection. J Virol 77:1357–1367 [CrossRef]
    [Google Scholar]
  40. Torii S., Egan D. A., Evans R. A., Reed J. C. 1999; Human Daxx regulates Fas-induced apoptosis from nuclear PML oncogenic domains (PODs). EMBO J 18:6037–6049 [CrossRef]
    [Google Scholar]
  41. Wright E., Bain M., Teague L., Murphy J., Sinclair J. 2005; Ets-2 repressor factor recruits histone deacetylase to silence human cytomegalovirus immediate-early gene expression in non-permissive cells. J Gen Virol 86:535–544 [CrossRef]
    [Google Scholar]
  42. Xue Y., Gibbons R., Yan Z. & 7 other authors 2003; The ATRX syndrome protein forms a chromatin-remodeling complex with Daxx and localizes in promyelocytic leukemia nuclear bodies. Proc Natl Acad Sci U S A 100:10635–10640 [CrossRef]
    [Google Scholar]
  43. Yang X., Khosravi-Far R., Chang H. Y., Baltimore D. 1997; Daxx, a novel Fas-binding protein that activates JNK and apoptosis. Cell 89:1067–1076 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81566-0
Loading
/content/journal/jgv/10.1099/vir.0.81566-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error