1887

Abstract

Virus-like particle-based vaccines for high-risk human papillomaviruses (HPVs) appear to have great promise; however, cell culture-derived vaccines will probably be very expensive. The optimization of expression of different codon-optimized versions of the HPV-16 L1 capsid protein gene in plants has been explored by means of transient expression from a novel suite of binary expression vectors, which allow targeting of recombinant protein to the cytoplasm, endoplasmic reticulum (ER) or chloroplasts. A gene resynthesized to reflect human codon usage expresses better than the native gene, which expresses better than a plant-optimized gene. Moreover, chloroplast localization allows significantly higher levels of accumulation of L1 protein than does cytoplasmic localization, whilst ER retention was least successful. High levels of L1 (>17 % total soluble protein) could be produced via transient expression: the protein assembled into higher-order structures visible by electron microscopy, and a concentrated extract was highly immunogenic in mice after subcutaneous injection and elicited high-titre neutralizing antibodies. Transgenic tobacco plants expressing a human codon-optimized gene linked to a chloroplast-targeting signal expressed L1 at levels up to 11 % of the total soluble protein. These are the highest levels of HPV L1 expression reported for plants: these results, and the excellent immunogenicity of the product, significantly improve the prospects of making a conventional HPV vaccine by this means.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82718-0
2007-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/5/1460.html?itemId=/content/journal/jgv/10.1099/vir.0.82718-0&mimeType=html&fmt=ahah

References

  1. Biemelt S., Sonnewald U., Galmbacher P., Willmitzer L., Muller M. 2003; Production of human papillomavirus type 16 virus-like particles in transgenic plants. J Virol 77:9211–9220 [CrossRef]
    [Google Scholar]
  2. Collier B., Oberg D., Zhao X., Schwartz S. 2002; Specific inactivation of inhibitory sequences in the 5′ end of the human papillomavirus type 16 L1 open reading frame results in production of high levels of L1 protein in human epithelial cells. J Virol 76:2739–2752 [CrossRef]
    [Google Scholar]
  3. Fischer R., Stoger E., Schillberg S., Christou P., Twyman R. M. 2004; Plant-based production of biopharmaceuticals. Curr Opin Plant Biol 7:152–158 [CrossRef]
    [Google Scholar]
  4. Harper D. M., Franco E. L., Wheeler C., Ferris D. G., Jenkins D., Schuind A., Zahaf T., Innis B., Naud P. other authors 2004; Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomised controlled trial. Lancet 364:1757–1765 [CrossRef]
    [Google Scholar]
  5. Horsch R. B., Rogers S. G., Fraley R. T. 1985; Transgenic plants. Cold Spring Harb Symp Quant Biol 50:433–437 [CrossRef]
    [Google Scholar]
  6. Kapila J., De Rycke R., Van Montagu M., Angenon G. 1997; An Agrobacterium -mediated transient gene expression system for intact leaves. Plant Sci 122:101–108 [CrossRef]
    [Google Scholar]
  7. Kohl T., Hitzeroth I. I., Stewart D., Varsani A., Govan V. A., Christensen N. D., Williamson A. L., Rybicki E. P. 2006; Plant-produced cottontail rabbit papillomavirus L1 protein protects against tumor challenge: a proof-of-concept study. Clin Vaccine Immunol 13:845–853 [CrossRef]
    [Google Scholar]
  8. Liu H. L., Li W. S., Lei T., Zheng J., Zhang Z., Yan X. F., Wang Z. Z., Wang Y. L., Si L. S. 2005; Expression of human papillomavirus type 16 L1 protein in transgenic tobacco plants. Acta Biochim Biophys Sin (Shanghai) 37:153–158 [CrossRef]
    [Google Scholar]
  9. Maclean J., Rybicki E. P., Williamson A. L. 2005; Vaccination strategies for the prevention of cervical cancer. Expert Rev Anticancer Ther 5:97–107 [CrossRef]
    [Google Scholar]
  10. Mao C., Koutsky L. A., Ault K. A., Wheeler C. M., Brown D. R., Wiley D. J., Alvarez F. B., Bautista O. M., Jansen K. U. other authors 2006; Efficacy of human papillomavirus-16 vaccine to prevent cervical intraepithelial neoplasia: a randomized controlled trial. Obstet Gynecol 107:18–27 [CrossRef]
    [Google Scholar]
  11. Mason H. S., Warzecha H., Mor T., Arntzen C. J. 2002; Edible plant vaccines: applications for prophylactic and therapeutic molecular medicine. Trends Mol Med 8:324–329 [CrossRef]
    [Google Scholar]
  12. Pastrana D. V., Buck C. B., Pang Y. Y., Thompson C. D., Castle P. E., FitzGerald P. C., Kruger K. S., Lowy D. R., Schiller J. T. 2004; Reactivity of human sera in a sensitive, high-throughput pseudovirus-based papillomavirus neutralization assay for HPV16 and HPV18. Virology 321:205–216 [CrossRef]
    [Google Scholar]
  13. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  14. Sanders G. D., Taira A. V. 2003; Cost-effectiveness of a potential vaccine for human papillomavirus. Emerg Infect Dis 9:37–48 [CrossRef]
    [Google Scholar]
  15. Shen W. J., Forde B. G. 1989; Efficient transformation of agrobacterium spp by high-voltage electroporation. Nucleic Acids Res 17:8385 [CrossRef]
    [Google Scholar]
  16. Somers D. A., Makarevitch I. 2004; Transgene intergration in plants: poking or patching holes in promiscuous genomes?. Curr Opin Biotechnol 15:126–131 [CrossRef]
    [Google Scholar]
  17. Studentsov Y. Y., Schiffman M., Strickler H. D., Ho G. Y., Pang Y. Y., Schiller J., Herrero R., Burk R. D. 2002; Enhanced enzyme-linked immunosorbent assay for detection of antibodies to virus-like particles of human papillomavirus. J Clin Microbiol 40:1755–1760 [CrossRef]
    [Google Scholar]
  18. Taira A. V., Neukermans C. P., Sanders G. D. 2004; Evaluating human papillomavirus vaccination programs. Emerg Infect Dis 10:1915–1923 [CrossRef]
    [Google Scholar]
  19. Takeda A., Sugiyama K., Nagano H., Mori M., Kaido M., Mise K., Tsuda S., Okuno T. 2002; Identification of a novel RNA silencing suppressor, NSs protein of Tomato spotted wilt virus. FEBS Lett 532:75–79 [CrossRef]
    [Google Scholar]
  20. Varsani A., Williamson A. L., Rose R. C., Jaffer M., Rybicki E. P. 2003; Expression of Human papillomavirus type 16 major capsid protein in transgenic Nicotiana tabacum cv. Xanthi. Arch Virol 148:1771–1786 [CrossRef]
    [Google Scholar]
  21. Varsani A., Williamson A. L., Stewart D., Rybicki E. P. 2006; Transient expression of Human papillomavirus type 16 L1 protein in Nicotiana benthamiana using an infectious tobamovirus vector. Virus Res 120:91–96 [CrossRef]
    [Google Scholar]
  22. Voinnet O. 2001; RNA silencing as a plant immune system against viruses. Trends Genet 17:449–459 [CrossRef]
    [Google Scholar]
  23. Voinnet O., Rivas S., Mestre P., Baulcombe D. 2003; An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33:949–956 [CrossRef]
    [Google Scholar]
  24. Warzecha H., Mason H. S., Lane C., Tryggvesson A., Rybicki E., Williamson A. L., Clements J. D., Rose R. C. 2003; Oral immunogenicity of human papillomavirus-like particles expressed in potato. J Virol 77:8702–8711 [CrossRef]
    [Google Scholar]
  25. Zhou J., Doorbar J., Sun X. Y., Crawford L. V., McLean C. S., Frazer I. H. 1991; Identification of the nuclear localization signal of human papillomavirus type 16 L1 protein. Virology 185:625–632 [CrossRef]
    [Google Scholar]
  26. Zupan J., Muth T. R., Draper O., Zambryski P. 2000; The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J 23:11–28 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82718-0
Loading
/content/journal/jgv/10.1099/vir.0.82718-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error