1887

Abstract

Comparative 16S rRNA gene sequence analysis and major physiological differences indicate two distinct sublineages within the genus : the lineage, comprising (type strain KB740=DSM 6898=CIP 109473=NBRC 107771), (type strain U120=DSM 14744=LMG 26916), (type strain LuFRes1=DSM 12081=LMG 30943), (type strain Tol-4=ATCC 51758=CIP 109470), (type strain Td21=ATCC 700604=DSM 15124) and (type strain MF63=ATCC 700605), and the lineage, comprising (type strain VB32=ATCC 51398=LMG 9092), (type strain SWub3=ATCC 51397=LMG 9095) and (type strain DQS-4=BCRC 80407=KCTC 23918=LMG 26893). lineage members have remarkable anaerobic degradation capacities encompassing a multitude of alkylbenzenes, aromatic compounds and monoterpenes, often involving novel biochemical reactions. In contrast, lineage members are diazotrophic endophytes lacking these catabolic capacities. It is proposed that species of the lineage should be classified in a novel genus, gen. nov. Finally, based on the literature and new growth, DNA–DNA hybridization and proteomic data, the following five new species are proposed: sp. nov. (type strain EbN1=DSM 19018=LMG 30748 and strain pCyN1=DSM 19016=LMG 31004), sp. nov. (type strain ToN1=DSM 19019=LMG 30746), sp. nov. (type strain PbN1=DSM 19017=LMG 31005), sp. nov. (type strain T=DSM 19020=LMG 30751) and sp. nov. (type strain 22Lin=DSM 15408=LMG 30750).

Funding
This study was supported by the:
  • Deutsche Forschungsgemeinschaft
  • Max-Planck-Gesellschaft
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003244
2019-02-14
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/4/982.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003244&mimeType=html&fmt=ahah

References

  1. Harayama S, Kok M, Neidle EL. Functional and evolutionary relationships among diverse oxygenases. Annu Rev Microbiol 1992; 46:565–601 [View Article][PubMed]
    [Google Scholar]
  2. Heider J, Fuchs G. Anaerobic metabolism of aromatic compounds. Eur J Biochem 1997; 243:577–596 [View Article][PubMed]
    [Google Scholar]
  3. Harwood CS, Burchhardt G, Herrmann H, Fuchs G. Anaerobic metabolism of aromatic compounds via the benzoyl-CoA pathway. FEMS Microbiol Rev 1998; 22:439–458 [View Article]
    [Google Scholar]
  4. Widdel F, Rabus R. Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 2001; 12:259–276 [View Article][PubMed]
    [Google Scholar]
  5. Rabus R, Boll M, Heider J, Meckenstock RU, Buckel W et al. Anaerobic microbial degradation of hydrocarbons: from enzymatic reactions to the environment. J Mol Microbiol Biotechnol 2016; 26:5–28 [View Article][PubMed]
    [Google Scholar]
  6. Macy JM, Rech S, Auling G, Dorsch M, Stackebrandt E et al. Thauera selenatis gen. nov., sp. nov., a member of the beta subclass of Proteobacteria with a novel type of anaerobic respiration. Int J Syst Bacteriol 1993; 43:135–142 [View Article][PubMed]
    [Google Scholar]
  7. Anders HJ, Kaetzke A, Kämpfer P, Ludwig W, Fuchs G. Taxonomic position of aromatic-degrading denitrifying pseudomonad strains K 172 and KB 740 and their description as new members of the genera Thauera, as Thauera aromatica sp. nov., and Azoarcus, as Azoarcus evansii sp. nov., respectively, members of the beta subclass of the Proteobacteria . Int J Syst Bacteriol 1995; 45:327–333 [View Article][PubMed]
    [Google Scholar]
  8. Mechichi T, Stackebrandt E, Gad'on N, Fuchs G. Phylogenetic and metabolic diversity of bacteria degrading aromatic compounds under denitrifying conditions, and description of Thauera phenylacetica sp. nov., Thauera aminoaromatica sp. nov., and Azoarcus buckelii sp. nov. Arch Microbiol 2002; 178:26–35 [View Article][PubMed]
    [Google Scholar]
  9. Song B, Palleroni NJ, Kerkhof LJ, Häggblom MM. Characterization of halobenzoate-degrading, denitrifying Azoarcus and Thauera isolates and description of Thauera chlorobenzoica sp. nov. Int J Syst Evol Microbiol 2001; 51:589–602 [View Article][PubMed]
    [Google Scholar]
  10. Scholten E, Lukow T, Auling G, Kroppenstedt RM, Rainey FA et al. Thauera mechernichensis sp. nov., an aerobic denitrifier from a leachate treatment plant. Int J Syst Bacteriol 1999; 49:1045–1051 [View Article][PubMed]
    [Google Scholar]
  11. Foss S, Harder J. Thauera linaloolentis sp. nov. and Thauera terpenica sp. nov., isolated on oxygen-containing monoterpenes (linalool, menthol, and eucalyptol) nitrate. Syst Appl Microbiol 1998; 21:365–373 [View Article][PubMed]
    [Google Scholar]
  12. Reinhold-Hurek B, Hurek T, Gillis M, Hoste B, Vancanneyt M et al. Azoarcus gen. nov., nitrogen-fixing proteobacteria associated with roots of kallar grass (Leptochloa fusca (L.) Kunth), and description of two species, Azoarcus indigens sp. nov. and Azoarcus communis sp. nov. Int J Syst Bacteriol 1993; 43:574–584 [View Article]
    [Google Scholar]
  13. Faoro H, Menegazzo RR, Battistoni F, Gyaneshwar P, do Amaral FP et al. The oil-contaminated soil diazotroph Azoarcus olearius DQS-4T is genetically and phenotypically similar to the model grass endophyte Azoarcus sp. BH72. Environ Microbiol Rep 2017; 9:223–238 [View Article][PubMed]
    [Google Scholar]
  14. Chen MH, Sheu SY, James EK, Young CC, Chen WM. Azoarcus olearius sp. nov., a nitrogen-fixing bacterium isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2013; 63:3755–3761 [View Article][PubMed]
    [Google Scholar]
  15. Springer N, Ludwig W, Philipp B, Schink B. Azoarcus anaerobius sp. nov., a resorcinol-degrading, strictly anaerobic, denitrifying bacterium. Int J Syst Bacteriol 1998; 48:953–956 [View Article][PubMed]
    [Google Scholar]
  16. Zhou J, Fries MR, Chee-Sanford JC, Tiedje JM. Phylogenetic analyses of a new group of denitrifiers capable of anaerobic growth of toluene and description of Azoarcus tolulyticus sp. nov. Int J Syst Bacteriol 1995; 45:500–506 [View Article][PubMed]
    [Google Scholar]
  17. Song B, Häggblom MM, Zhou J, Tiedje JM, Palleroni NJ. Taxonomic characterization of denitrifying bacteria that degrade aromatic compounds and description of Azoarcus toluvorans sp. nov. and Azoarcus toluclasticus sp. nov. Int J Syst Bacteriol 1999; 49:1129–1140 [View Article][PubMed]
    [Google Scholar]
  18. Reinhold-Hurek B, Hurek T. Reassessment of the taxonomic structure of the diazotrophic genus Azoarcus sensu lato and description of three new genera and new species, Azovibrio restrictus gen. nov., sp. nov., Azospira oryzae gen. nov., sp. nov. and Azonexus fungiphilus gen. nov., sp. nov. Int J Syst Evol Microbiol 2000; 50:649–659 [View Article][PubMed]
    [Google Scholar]
  19. Boll M, Fuchs G, Heider J. Anaerobic oxidation of aromatic compounds and hydrocarbons. Curr Opin Chem Biol 2002; 6:604–611 [View Article][PubMed]
    [Google Scholar]
  20. Heider J, Spormann AM, Beller HR, Widdel F. Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiol Rev 1998; 22:459–473 [View Article]
    [Google Scholar]
  21. Hylemon PB, Harder J. Biotransformation of monoterpenes, bile acids, and other isoprenoids in anaerobic ecosystems. FEMS Microbiol Rev 1998; 22:475–488 [View Article][PubMed]
    [Google Scholar]
  22. Spormann AM, Widdel F. Metabolism of alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation 2000; 11:85–105 [View Article]
    [Google Scholar]
  23. Rabus R. Biodegradation of hydrocarbons under anoxic conditions. Petroleum Microbiology American Society of Microbiology; 2005 pp. 277–300
    [Google Scholar]
  24. Rabus R, Widdel F. Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch Microbiol 1995; 163:96–103 [View Article][PubMed]
    [Google Scholar]
  25. Harms G, Rabus R, Widdel F. Anaerobic oxidation of the aromatic plant hydrocarbon p-cymene by newly isolated denitrifying bacteria. Arch Microbiol 1999; 172:303–312 [View Article][PubMed]
    [Google Scholar]
  26. Rabus R, Nordhaus R, Ludwig W, Widdel F. Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl Environ Microbiol 1993; 59:1444–1451[PubMed]
    [Google Scholar]
  27. Widdel F, Bak F. Gram-negative mesophilic sulfate-reducing bacteria. In Balows AT, Trüper HG, Dworkin M, Harder W, Schleifer K-H. (editors) The Prokaryotes, 2nd ed. New York: Springer; 1992 pp. 3352–3378
    [Google Scholar]
  28. Reinhold B, Hurek T, Fendrik I, Pot B, Gillis M et al. Azospirillum halopraeferens sp. nov., a nitrogen-fixing organism associated with roots of kallar grass (Leptochloa fusca (L.) Kunth). Int J Syst Bacteriol 1987; 37:43–51 [View Article]
    [Google Scholar]
  29. Zehr JP, McReynolds LA. Use of degenerate oligonucleotides for amplification of the nifH gene from the marine cyanobacterium Trichodesmium thiebautii . Appl Environ Microbiol 1989; 55:2522–2526[PubMed]
    [Google Scholar]
  30. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  31. Cashion P, Holder-Franklin MA, McCully J, Franklin M. A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 1977; 81:461–466 [View Article][PubMed]
    [Google Scholar]
  32. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  33. Ziemke F, Höfle MG, Lalucat J, Rosselló-Mora R. Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 1998; 48:179–186 [View Article][PubMed]
    [Google Scholar]
  34. Kämpfer P, Dreyer U, Neef A, Dott W, Busse HJ et al. Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 2003; 53:93–97 [View Article][PubMed]
    [Google Scholar]
  35. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  36. Jolliffe IT. Principal Component Analysis, 2nd ed. Springer; 2002
    [Google Scholar]
  37. Fries MR, Zhou J, Chee-Sanford J, Tiedje JM. Isolation, characterization, and distribution of denitrifying toluene degraders from a variety of habitats. Appl Environ Microbiol 1994; 60:2802–2810[PubMed]
    [Google Scholar]
  38. Harder J. Anaerobic degradation of cyclohexane-1,2-diol by a new Azoarcus species. Arch Microbiol 1997; 168:199–204 [View Article]
    [Google Scholar]
  39. Altenschmidt U, Oswald B, Fuchs G. Purification and characterization of benzoate-coenzyme A ligase and 2-aminobenzoate-coenzyme A ligases from a denitrifying Pseudomonas sp. J Bacteriol 1991; 173:5494–5501 [View Article][PubMed]
    [Google Scholar]
  40. Wöhlbrand L, Kallerhoff B, Lange D, Hufnagel P, Thiermann J et al. Functional proteomic view of metabolic regulation in "Aromatoleum aromaticum" strain EbN1. Proteomics 2007; 7:2222–2239 [View Article][PubMed]
    [Google Scholar]
  41. Hirsch W, Schägger H, Fuchs G. Phenylglyoxylate:NAD+ oxidoreductase (CoA benzoylating), a new enzyme of anaerobic phenylalanine metabolism in the denitrifying bacterium Azoarcus evansii . Eur J Biochem 1998; 251:907–915 [View Article][PubMed]
    [Google Scholar]
  42. Kniemeyer O, Heider J. Ethylbenzene dehydrogenase, a novel hydrocarbon-oxidizing molybdenum/iron-sulfur/heme enzyme. J Biol Chem 2001; 276:21381–21386 [View Article][PubMed]
    [Google Scholar]
  43. Beller HR, Spormann AM. Anaerobic activation of toluene and o-xylene by addition to fumarate in denitrifying strain T. J Bacteriol 1997; 179:670–676 [View Article][PubMed]
    [Google Scholar]
  44. Johnson HA, Pelletier DA, Spormann AM. Isolation and characterization of anaerobic ethylbenzene dehydrogenase, a novel Mo-Fe-S enzyme. J Bacteriol 2001; 183:4536–4542 [View Article][PubMed]
    [Google Scholar]
  45. Rabus R, Kube M, Beck A, Widdel F, Reinhardt R. Genes involved in the anaerobic degradation of ethylbenzene in a denitrifying bacterium, strain EbN1. Arch Microbiol 2002; 178:506–516 [View Article][PubMed]
    [Google Scholar]
  46. Kube M, Heider J, Amann J, Hufnagel P, Kühner S et al. Genes involved in the anaerobic degradation of toluene in a denitrifying bacterium, strain EbN1. Arch Microbiol 2004; 181:182–194 [View Article][PubMed]
    [Google Scholar]
  47. Kühner S, Wöhlbrand L, Fritz I, Wruck W, Hultschig C et al. Substrate-dependent regulation of anaerobic degradation pathways for toluene and ethylbenzene in a denitrifying bacterium, strain EbN1. J Bacteriol 2005; 187:1493–1503 [View Article][PubMed]
    [Google Scholar]
  48. Rabus R, Widdel F. Utilization of alkylbenzenes during anaerobic growth of pure cultures of denitrifying bacteria on crude oil. Appl Environ Microbiol 1996; 62:1238–1241[PubMed]
    [Google Scholar]
  49. Rabus R, Wilkes H, Schramm A, Harms G, Behrends A et al. Anaerobic utilization of alkylbenzenes and n-alkanes from crude oil in an enrichment culture of denitrifying bacteria affiliating with the β-subclass of Proteobacteria . Environ Microbiol 1999; 1:145–157 [View Article][PubMed]
    [Google Scholar]
  50. Pelz O, Chatzinotas A, Andersen N, Bernasconi SM, Hesse C et al. Use of isotopic and molecular techniques to link toluene degradation in denitrifying aquifer microcosms to specific microbial populations. Arch Microbiol 2001; 175:270–281 [View Article][PubMed]
    [Google Scholar]
  51. Reusser DE, Istok JD, Beller HR, Field JA. In situ transformation of deuterated toluene and xylene to benzylsuccinic acid analogues in BTEX-contaminated aquifers. Environ Sci Technol 2002; 36:4127–4134 [View Article][PubMed]
    [Google Scholar]
  52. Head IM, Jones DM, Larter SR. Biological activity in the deep subsurface and the origin of heavy oil. Nature 2003; 426:344–352 [View Article][PubMed]
    [Google Scholar]
  53. Eady RR. Structurefunction relationships of alternative nitrogenases. Chem Rev 1996; 96:3013–3030 [View Article][PubMed]
    [Google Scholar]
  54. Tan Z, Hurek T, Reinhold-Hurek B. Effect of N-fertilization, plant genotype and environmental conditions on nifH gene pools in roots of rice. Environ Microbiol 2003; 5:1009–1015 [View Article][PubMed]
    [Google Scholar]
  55. Fernández H, Prandoni N, Fernández-Pascual M, Fajardo S, Morcillo C et al. Azoarcus sp. CIB, an anaerobic biodegrader of aromatic compounds shows an endophytic lifestyle. PLoS One 2014; 9:e110771 [View Article][PubMed]
    [Google Scholar]
  56. Rabus R, Kube M, Heider J, Beck A, Heitmann K et al. The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. Arch Microbiol 2005; 183:27–36 [View Article][PubMed]
    [Google Scholar]
  57. Rabus R. Functional genomics of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. Appl Microbiol Biotechnol 2005; 68:580–587 [View Article][PubMed]
    [Google Scholar]
  58. Rabus R, Trautwein K, Wöhlbrand L. Towards habitat-oriented systems biology of "Aromatoleum aromaticum" EbN1: chemical sensing, catabolic network modulation and growth control in anaerobic aromatic compound degradation. Appl Microbiol Biotechnol 2014; 98:3371–3388
    [Google Scholar]
  59. Özcan A, Pausch P, Linden A, Wulf A, Schühle K et al. Type IV CRISPR RNA processing and effector complex formation in Aromatoleum aromaticum . Nat Microbiol 2019; 4:89–96 [View Article]
    [Google Scholar]
  60. Krause A, Ramakumar A, Bartels D, Battistoni F, Bekel T et al. Complete genome of the mutualistic, N 2 -fixing grass endophyte Azoarcus sp. strain BH72. Nat Biotechnol 2006; 24:1–7 [View Article][PubMed]
    [Google Scholar]
  61. Martín-Moldes Z, Zamarro MT, del Cerro C, Valencia A, Gómez MJ et al. Whole-genome analysis of Azoarcus sp. strain CIB provides genetic insights to its different lifestyles and predicts novel metabolic features. Syst Appl Microbiol 2015; 38:462–471 [View Article][PubMed]
    [Google Scholar]
  62. Reinhold B, Hurek T, Niemann EG, Fendrik I. Close association of Azospirillum and diazotrophic rods with different root zones of kallar grass. Appl Environ Microbiol 1986; 52:520–526[PubMed]
    [Google Scholar]
  63. Engelhard M, Hurek T, Reinhold-Hurek B. Preferential occurrence of diazotrophic endophytes, Azoarcus spp., in wild rice species and land races of Oryza sativa in comparison with modern races. Environ Microbiol 2000; 2:131–141 [View Article][PubMed]
    [Google Scholar]
  64. Hurek T, Handley LL, Reinhold-Hurek B, Piché Y. Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Mol Plant Microbe Interact 2002; 15:233–242 [View Article][PubMed]
    [Google Scholar]
  65. Heider J, Boll M, Breese K, Breinig S, Ebenau-Jehle C et al. Differential induction of enzymes involved in anaerobic metabolism of aromatic compounds in the denitrifying bacterium Thauera aromatica . Arch Microbiol 1998; 170:120–131 [View Article][PubMed]
    [Google Scholar]
  66. Lay JO. MALDI-TOF mass spectrometry of bacteria. Mass Spectrom Rev 2001; 20:172–194 [View Article][PubMed]
    [Google Scholar]
  67. Arnold RJ, Reilly JP. Observation of Escherichia coli ribosomal proteins and their posttranslational modifications by mass spectrometry. Anal Biochem 1999; 269:105–112 [View Article][PubMed]
    [Google Scholar]
  68. Fenselau C, Demirev PA. Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom Rev 2001; 20:157–171 [View Article][PubMed]
    [Google Scholar]
  69. Braun K, Gibson DT. Anaerobic degradation of 2-aminobenzoate (anthranilic acid) by denitrifying bacteria. Appl Environ Microbiol 1984; 48:102–107[PubMed]
    [Google Scholar]
  70. Tschech A, Fuchs G. Anaerobic degradation of phenol by pure cultures of newly isolated denitrifying pseudomonads. Arch Microbiol 1987; 148:213–217 [View Article][PubMed]
    [Google Scholar]
  71. Gorny N, Wahl G, Brune A, Schink B. A strictly anaerobic nitrate-reducing bacterium growing with resorcinol and other aromatic compounds. Arch Microbiol 1992; 158:48–53 [View Article][PubMed]
    [Google Scholar]
  72. Dolfing J, Zeyer J, Binder-Eicher P, Schwarzenbach RP. Isolation and characterization of a bacterium that mineralizes toluene in the absence of molecular oxygen. Arch Microbiol 1990; 154:336–341 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003244
Loading
/content/journal/ijsem/10.1099/ijsem.0.003244
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error