1887

Abstract

Dominant negative or trans-dominant mutants of viral proteins represent a new and exciting potential approach to antiviral therapy. Unfortunately, the extreme specificity of a given dominant negative mutant limits its general utility in treating a broad spectrum of viral diseases, since it can typically interfere with the activity of only a single viral polypeptide encoded by a single virus. However, it seems likely that dominant negative mutants of promiscuous viral trans-activator proteins, which by definition would repress rather than activate gene expression, should be able to inhibit infectious virus production for a number of different viruses. One such dominant negative mutant, derived from the herpes simplex virus type 1 (HSV-1) regulatory protein ICP0, was found previously to behave as a powerful repressor of gene expression from an assortment of HSV-1 and non-HSV-1 promoters in transient expression assays. In the present study, this ICP0 mutant was found to be capable of inhibiting the replication of both HSV-1 and a completely unrelated virus, human immunodeficiency virus, in cell culture. The properties of this dominant negative mutant indicate that it may have potential as a means of treating diseases caused by a number of DNA and RNA viruses. Moreover, a truncated form of ICP0 which can hypothetically be created by alternative splicing was found to possess similar inhibitory capabilities, suggesting that a virus-encoded version of this dominant negative mutant may play a role in down-regulating HSV-1 gene expression during infection .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-73-11-2955
1992-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/73/11/JV0730112955.html?itemId=/content/journal/jgv/10.1099/0022-1317-73-11-2955&mimeType=html&fmt=ahah

References

  1. Adachi A., Gendelman H. E., Koenig S., Folks T., Willey R., Rabson A., Martin M. A. 1986; Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. Journal of Virology 59:284–291
    [Google Scholar]
  2. Cai W., Schaffer P. A. 1989; Herpes simplex virus type 1 ICP0 plays a critical role in the de novo synthesis of infectious virus following transfection of viral DNA. Journal of Virology 63:4579–4589
    [Google Scholar]
  3. Chen J., Zhu X., Silverstein S. 1991; Mutational analysis of the sequence encoding ICP0 from herpes simplex virus type 1. Virology 180:207–220
    [Google Scholar]
  4. Cheung A. K. 1991; Cloning of the latency gene and early protein 0 gene of pseudorabies virus. Journal of Virology 65:5260–5271
    [Google Scholar]
  5. Claesson-Welsh L., Spear P. G. 1986; Oligomerization of herpes simplex virus glycoprotein B. Journal of Virology 60:803–806
    [Google Scholar]
  6. Clements G. B., Stow N. D. 1989; A herpes simplex virus type 1 mutant containing a deletion within immediate early gene 1 is latency-competent in mice. Journal of General Virology 70:2501–2506
    [Google Scholar]
  7. Crute J. J., Tsurumi T., Zhu L., Weller S. K., Olivo P. D., Challberg M. D., Mocarski E. S., Lehman I. R. 1989; Herpes simplex virus 1 helicase-primase: a complex of three herpes-encoded gene products. Proceedings of the National Academy of Sciences, U.S.A. 86:2186–2189
    [Google Scholar]
  8. Deatly A. M., Spivack J. G., Lavi E., Fraser N. W. 1987; RNA from an immediate early region of the type 1 herpes simplex virus genome is present in the trigeminal ganglia of latently infected mice. Proceedings of the National Academy of Sciences, U.S.A. 84:3204–3208
    [Google Scholar]
  9. Everett R. D. 1984; Trans-activation of transcription by herpes virus products: requirement for two HSV-1 immediate early polypeptides for maximum activity. EMBO Journal 3:3135–3141
    [Google Scholar]
  10. Everett R. D. 1986; The products of herpes simplex virus type 1 (HSV-1) immediate early genes 1, 2 and 3 can activate HSV-1 gene expression in trans. Journal of General Virology 67:2507–2513
    [Google Scholar]
  11. Everett R. D. 1987; A detailed mutational analysis of Vmw110, a trans-acting transcriptional activator encoded by herpes simplex virus type 1. EMBO Journal 6:2069–2076
    [Google Scholar]
  12. Everett R. D. 1988a; Analysis of functional domains of herpes simplex virus type 1 immediate early polypeptide Vmw110. Journal of Molecular Biology 202:87–96
    [Google Scholar]
  13. Everett R. D. 1988b; Promoter sequence and cell type can dramatically affect the efficiency of transcriptional activation induced by herpes simplex virus type 1 and its immediate-early gene products Vmwl75 and Vmw110. Journal of Molecular Biology 203:739–751
    [Google Scholar]
  14. Everett R. D. 1991; Construction and characterization of herpes simplex virus type 1 viruses without introns in immediate early gene 1. Journal of General Virology 72:651–659
    [Google Scholar]
  15. Everett R. D., Preston C. M., Stow N. D. 1991; Functional and genetic analysis of the role of Vmw110 in herpes simplex virus replication. In Herpesvirus Transcription and its Regulation pp. 49–76 Edited by Wagner E. K. Boca Raton: CRC Press;
    [Google Scholar]
  16. Felgner P. L., Rhodes G. 1991; Gene therapeutics. Nature, London 349:351–352
    [Google Scholar]
  17. Friedman A. D., Triezenberg S. J., McKnight S. L. 1988; Expression of a truncated viral trans-activator selectively impedes lytic infection by its cognate virus. Nature, London 335:452–454
    [Google Scholar]
  18. Gao M., Knipe D. M. 1991; Potential role for herpes simplex virus ICP8 DNA replication protein in stimulation of late gene expression. Journal of Virology 65:2666–2675
    [Google Scholar]
  19. Geller A. I., Breakefield X. O. 1988; A defective HSV-1 vector expresses Escherichia coli β-galactosidase in cultured peripheral neurons. Science 241:1667–1669
    [Google Scholar]
  20. Gelman I. H., Silverstein S. 1985; Identification of immediate early genes from herpes simplex virus that transactivate the virus thymidine kinase gene. Proceedings of the National Academy of Sciences, U.S.A. 82:5265–5269
    [Google Scholar]
  21. Goldin A. L., Sandri-Goldin R. M., Levine M., Glorioso J. C. 1981; Cloning of herpes simplex virus type 1 sequences representing the whole genome. Journal of Virology 38:50–58
    [Google Scholar]
  22. Gottleib J., Marcy A. I., Coen D. M., Challberg M. D. 1990; The herpes simplex virus type 1 UL42 gene product : a subunit of DNA polymerase that functions to increase processivity. Journal of Virology 64:5976–5987
    [Google Scholar]
  23. Green M., Ishino M., Lowenstein P. M. 1989; Mutational analysis of HIV-1 tat minimal domain peptides: identification of trans-dominant mutants that suppress HIV-LTR-driven gene expression. Cell 58:215–223
    [Google Scholar]
  24. Harris R. A., Everett R. D., Zhu X., Silverstein S., Preston C. M. 1989; Herpes simplex virus type 1 immediate early protein Vmw110 reactivates latent herpes simplex virus type 2 in an in vitro latency system. Journal of Virology 63:3513–3515
    [Google Scholar]
  25. Herskowitz I. 1987; Functional inactivation of genes by dominant negative mutants. Nature, London 329:219–222
    [Google Scholar]
  26. Hill J. M., Sederati F., Javier R. T., Wagner E. K., Stevens J. G. 1990; Herpes simplex virus latent phase transcription facilitates in vivo reactivation. Virology 174:117–125
    [Google Scholar]
  27. Homa F. L., Otal T. M., Glorioso J. C., Levine M. 1986; Transcriptional control signals of a herpes simplex virus type 1 late (γ 2) gene lie within bases −34 to +124 relative to the 5′ terminus of the mRNA. Molecular and Cellular Biology 6:3652–3666
    [Google Scholar]
  28. Javier R. T., Stevens J. G., Dissette V. B., Wagner E. K. 1988; A herpes simplex virus transcript abundant in latently infected neurons is dispensable for establishment of the latent state. Virology 166:254–257
    [Google Scholar]
  29. Johnson D. C., Frame M. C., Ligas M. W., Cross A. M., Stow N. D. 1988; Herpes simplex virus immunoglobulin G Fc receptor activity depends on a complex of two viral glycoproteins, gE and gl. Journal of Virology 62:1347–1354
    [Google Scholar]
  30. Koff A., Tegtmeyer P. 1988; Characterization of major recognition sequences for a herpes simplex virus type 1 originbinding protein. Journal of Virology 62:4096–4103
    [Google Scholar]
  31. Kwong A. D., Frenkel N. 1989; The herpes simplex virus virion host shutoff function. Journal of Virology 63:4834–4839
    [Google Scholar]
  32. Lambert P. F., Spalholz B. A., Howley P. M. 1987; A transcriptional repressor encoded by BPV-1 shares a common carboxy terminal domain with the E2 transactivator. Cell 50:69–78
    [Google Scholar]
  33. Leib D. A., Coen D. M., Bogard C. L., Hicks K. A., Yager D. R., Knipe D. M., Tyler K. L., Schaffer P. A. 1989a; Immediate early regulatory gene mutants define different stages in the establishment and reactivation of herpes simplex virus latency. Journal of Virology 63:759–768
    [Google Scholar]
  34. Leib D. A., Bogard C. L., Kosz-Vnenchak M., Hicks K. A., Coen D. M., Knipe D. M., Schaffer P. A. 1989b; A deletion mutant of the latency-associated transcript of herpes simplex virus type 1 reactivates from the latent state with reduced frequency. Journal of Virology 63:2893–2900
    [Google Scholar]
  35. Malim M. H., Bohnlein S., Hauber J., Cullen B. R. 1989; Functional dissection of the HIV-1 rev trans-activator - derivation of a trans dominant repressor of rev function. Cell 58:205–214
    [Google Scholar]
  36. Mann R., Mulligan R. L., Baltimore D. 1983; Construction of a retrovirus packaging mutant and its use to produce helper free defective retrovirus. Cell 33:153–159
    [Google Scholar]
  37. Misra S., Rio D. C. 1990; Cytotype control of Drosophila P element transposition: the 66kD protein is a repressor of transposase activity. Cell 62:269–284
    [Google Scholar]
  38. Mosca J. D., Bednarik D. P., Raj N. B. K., Rosen C. A., Sodroski J. G., Haseltine W. A., Hayward G. S., Pitha P. M. 1987; Activation of human immunodeficiency virus by herpesvirus infection: identification of a region within the long terminal repeat that responds to a trans-acting factor encoded by herpes simplex virus 1. Proceedings of the National Academy of Sciences, U.S.A. 84:7408–7412
    [Google Scholar]
  39. Nabel G. J., Rice S. A., Knipe D. M., Baltimore D. 1988; Alternative mechanisms for activation of human immunodeficiency virus enhancer in T cells. Science 239:1299–1302
    [Google Scholar]
  40. Nagpal S., Ostrove J. M. 1991; Characterization of a potent varicella-zoster virus-encoded trans-repressor. Journal of Virology 65:5289–5296
    [Google Scholar]
  41. Natarajan R., Deshmane S., Valyi-Nagy T., Everett R., Fraser N. W. 1991; A herpes simplex virus type 1 mutant lacking the ICP0 introns reactivates with normal efficiency. Journal of Virology 65:5569–5573
    [Google Scholar]
  42. O’Hare P., Hayward G. S. 1985; Evidence for a direct role for both the 175, 000- and 110, 000-molecular weight immediate early proteins of herpes simplex virus in the trans-activation of delayed early promoters. Journal of Virology 53:751–760
    [Google Scholar]
  43. O’Hare P., Mosca J. D., Hayward G. S. 1986; Multiple transactivating proteins of herpes simplex virus that have different target specificities and exhibit both positive and negative regulatory functions. Cancer Cells 4:175–188
    [Google Scholar]
  44. Ostrove J. M., Leonard J., Weck K. E., Rabson A. B., Gendelman H. E. 1987; Activation of the human immunodeficiency virus by herpes simplex virus type 1. Journal of Virology 61:3726–3732
    [Google Scholar]
  45. Perry L. J., Rixon F. J., Everett R. D., Frame M. C., McGeoch D. J. 1986; Characterization of the IE110 gene of herpes simplex virus type 1. Journal of General Virology 67:2365–2380
    [Google Scholar]
  46. Puga A., Notkins A. L. 1987; Continued expression of a polyA+ transcript of herpes simplex virus type 1 in trigeminal ganglia of latently infected mice. Journal of Virology 61:1700–1703
    [Google Scholar]
  47. Quinlan M. P., Knipe D. M. 1985; Stimulation of expression of a herpes simplex virus DNA-binding protein by two viral functions. Molecular and Cellular Biology 5:957–963
    [Google Scholar]
  48. Rock D. L., Nesburn A. B., Ghiasi H., Ong J., Lewis T. L., Lokensgard J. R., Wechsler S. L. 1987; Detection of latency-related viral RNAs in trigeminal ganglia of rabbits latently infected with herpes simplex virus type 1. Journal of Virology 61:3820–3826
    [Google Scholar]
  49. Roman C., Cohn L., Calame K. 1991; A dominant negative form of transcription activator mTFE3 created by differential splicing. Science 254:94–97
    [Google Scholar]
  50. Sadowski I., Ptashne M. 1989; A vector for expressing GAL4(1-141) fusions in mammalian cells. Nucleic Acids Research 17:7539
    [Google Scholar]
  51. Sekulovich R. E., Leary K., Sandri-Goldin R. M. 1988; The herpes simplex virus type 1 a protein ICP27 can act as a transrepressor or trans-activator in combination with ICP4 and ICP0. Journal of Virology 62:4510–4522
    [Google Scholar]
  52. Shapira M., Homa F. L., Glorioso J. C., Levine M. 1987; Regulation of the herpes simplex virus type 1 late (γ 2) glycoprotein C gene: sequences between base pairs −34 to +29 control transient expression and responsiveness to transactivation by the products of the immediate early (α) 4 and 0 genes. Nucleic Acids Research 15:3097–3111
    [Google Scholar]
  53. Shepard A. A., Tolentino P., DeLuca N. A. 1990; Trans-dominant inhibition of herpes simplex virus transcriptional regulatory protein ICP4 by heterodimer formation. Journal of Virology 64:3916–3926
    [Google Scholar]
  54. Smith I. L., Sekulovich R. E., Hardwicke M. A., Sandri-Goldin R. M. 1991; Mutations in the activation region of herpes simplex virus regulatory protein ICP27 can be trans dominant. Journal of Virology 65:3656–3666
    [Google Scholar]
  55. Steiner I., Spivack J. G., Lirette R. P., Brown S. M., MacLean A. R., Subak-Sharpe J. H., Fraser N. W. 1989; Herpes simplex virus type 1 latency-associated transcripts are evidently not essential for latent infection. EMBO Journal 8:505–511
    [Google Scholar]
  56. Stevens J. G., Wagner E. K., Devi-Rao G. B., Cook M. L., Feldman L. T. 1987; RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science 235:1056–1059
    [Google Scholar]
  57. VanSanten V. L. 1991; Characterization of the bovine herpesvirus 4 major immediate-early transcript. Journal of Virology 65:5211–5224
    [Google Scholar]
  58. Weber P. C., Wigdahl B. 1992; Identification of dominant-negative mutants of the herpes simplex virus type 1 immediate-early protein ICP0. Journal of Virology 66:2261–2267
    [Google Scholar]
  59. Zhu X., Chen J., Young C. S. H., Silverstein S. 1990; Reactivation of latent herpes simplex virus by adenovirus recombinants encoding mutant IE-0 gene products. Journal of Virology 644489–4498
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-73-11-2955
Loading
/content/journal/jgv/10.1099/0022-1317-73-11-2955
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error