1887

Abstract

Classical swine fever virus (CSFV) -specific cytotoxic T lymphocytes (CTL) were derived from peripheral blood mononuclear leukocytes of immunized NIH-minipigs (MHC d/d haplotype) after restimulation with infectious CSFV. Their cytotoxic activity was determined against CSFV-infected target cells obtained from simian virus 40 (SV40) large T antigen-transfected immortalized kidney cells of a syngeneic miniature swine. Experiments with separated effector cell populations revealed that the CSFV-specific cytotoxic activity was mediated by CD4CD6CD8 MHC class I-restricted T lymphocytes. Infection of target cells with various vaccinia virus/CSFV recombinants led to the identification of a major antigenic site for CSFV-specific CTL near the cleavage site between the non-structural proteins p80 (NS3) and p10 (NS4a). Using synthetic overlapping nonapeptides which covered this protein region the sequence ENALLVALF is the first sequence to be identified as an MHC class I-restricted T cell epitope recognized by CSFV-specific CTL.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-12-3039
1995-12-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/12/JV0760123039.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-12-3039&mimeType=html&fmt=ahah

References

  1. Ada G. L., Jones P. D. 1986; The immune response to influenza infection. Current Topics in Microbiology and Immunology 128:1–54
    [Google Scholar]
  2. Aynaud J. M. 1988; Principles of vaccination. In Classical Swine Fever and Related Viral Infections pp 165–180 Edited by Liess B. Boston, Massachusetts: Martinus Nijhoff;
    [Google Scholar]
  3. Bennink J. R., Yewdell J. W. 1990; Recombinant vaccinia viruses as vectors for studying T-lymphocyte specificity and function. Current Topics in Microbiology and Immunology 163:153–184
    [Google Scholar]
  4. Berencsi K., Rando R. F., Detaisne C., Paoletti E., Plotkin S. A., Gonczol E. 1993; Murine cytotoxic T cell response specific for human cytomegalovirus glycoprotein B (gB) induced by adenovirus and vaccinia virus recombinants expressing gB. Journal of General Virology 74:2507–2512
    [Google Scholar]
  5. Byrne J. A., Oldstone M. B. A. 1984; Biology of cloned cytotoxic T-lymphocytes specific for lymphocytic choriomeningitis virus: clearance of virus in vivo. Journal of Virology 51:682–686
    [Google Scholar]
  6. Collett M. S., Larson R., Gold C., Strick D., Anderson D. K., Purchio A. F. 1988a; Molecular cloning and nucleotide sequence of the pestivirus bovine viral diarrhea virus. Virology 165:191–199
    [Google Scholar]
  7. Collett M. S., Larson R., Belzer S. K., Retzel E. 1988b; Proteins encoded by bovine viral diarrhea virus: the genomic organization of a pestivirus. Virology 165:200–208
    [Google Scholar]
  8. Cranage M. P., Kouzarides T., Bankier A. T., Satchwell S., Weston K., Tomlinson P., Barrell B., Hart H., Bell S. E., Minson A. C., Smith G. L. 1986; Identification of the human cytomegalovirus glycoprotein B gene and induction of neutralizing antibodies via its expression in recombinant vaccinia virus. EMBO Journal 5:3057–3063
    [Google Scholar]
  9. De Moerlooze L., Lecomte C., Brown-Shimmer S., Schmetz D., Guiot C., Vandenbergh D., Allaer D., Rossius M., Chappuis G., Dina D., Renard A., Martial J. A. 1993; Nucleotide sequence of the bovine viral diarrhoea virus Osloss strain: comparison with related viruses and identification of specific DNA probes in the 5′ untranslated region. Journal of General Virology 74:1433–1438
    [Google Scholar]
  10. Doherty P. C., Allan W., Eichelberger M. 1992; Roles of αβ and γδ T cell subsets in viral immunity. Annual Review of Immunology 10:123–151
    [Google Scholar]
  11. Erickson A. L., Houghton M., Choo Q. L., Weiner A. J., Ralston R., Muchmore E., Walker C. M. 1993; Hepatitis C virus-specific CTL responses in the liver of chimpanzees with acute and chronic hepatitis C. Journal of Immunology 151:4189–1199
    [Google Scholar]
  12. Hulst M. M., Westra D. F., Wensvoort G., Moormann R. J. M. 1993; Glycoprotein El of hog cholera virus expressed in insect cells protects swine from hog cholera. Journal of Virology 67:5435–5442
    [Google Scholar]
  13. Jonjic S., Koszinowski U. H. 1984; Monoclonal antibodies reactive with swine lymphocytes. I. Antibodies to membrane structures that define the cytolytic T-lymphocyte subset in the swine. Journal of Immunology 133:647–652
    [Google Scholar]
  14. Kimmann T. G., Bianchi A. T. J., Wensvoort G., De Bruin T. G. M., Meliefste C. 1993; Cellular immune response to hog cholera virus (HCV): T cells of immune pigs proliferate in vitro upon stimulation with live HCV, but the E1 envelope glycoprotein is not a major T-cell antigen. Journal of Virology 67:2922–2927
    [Google Scholar]
  15. Kurane I., Brinton M. A., Samson A. L., Ennis F. A. 1991; Dengue virus-specific, human CD4+CD8 cytotoxic T cell clones: multiple patterns of virus cross-reactivity recognized by NS3-specific T cell clones. Journal of Virology 65:1823–1828
    [Google Scholar]
  16. Li S., Rodrigues M., Rodriguez D., Rodriguez J. R., Esteban M., Palese P., Nussenzweig R. S., Zavala F. 1993; Priming with recombinant influenza virus followed by administration of recombinant vaccinia virus induces CD8+ T-cell-mediated protective immunity against malaria. Proceedings of the National Academy of Sciences, USA 90:5214–5218
    [Google Scholar]
  17. Lobigs M., Arthur C. E., Mullbacher A., Blanden R. V. 1994; The flavivirus nonstructural protein NS3 is a dominant source of cytotoxic T cell peptide determinants. Virology 202:195–201
    [Google Scholar]
  18. Lovett A. E., Hahn C. S., Rice C. M., Frey T. K., Wolinsky J. S. 1993; Rubella virus-specific cytotoxic T-lymphocyte responses: identification of the capsid as a target of major histocompatibility complex class I-restricted lysis and definition of two epitopes. Journal of Virology 61:5849–5858
    [Google Scholar]
  19. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  20. Martins C. L. V., Lawman M. J. P., Scholl T., Mebus C. A., Lunney J. K. 1993; African swine fever virus specific porcine cytotoxic T cell activity. Archives of Virology 129:211–225
    [Google Scholar]
  21. Meyers G., Rümenapf T., Thiel H.-J. 1989; Molecular cloning and nucleotide sequence of the genome of hog cholera virus. Virology 171:555–567
    [Google Scholar]
  22. Moormann R. J. M., Warmerdam P. A. M., van der Meer B., Schaaper W. M. M., Wensvoort G., Hulst M. M. 1990; Molecular cloning and nucleotide sequence of hog cholera virus strain Brescia and mapping of the genomic region encoding envelope protein E1. Virology 177:184–198
    [Google Scholar]
  23. Moss B. 1991; Vaccinia virus: a tool for research and vaccine development. Science 252:1662–1667
    [Google Scholar]
  24. Müller H. 1993 Molekulare und biochemische Charakterisierung verschiedener Stamrne des Virus der Klassischen Schweinepest als Grundlage zum Verstdndnis der Altenuierung dieses Virus. Ph. D. Thesis University of Tübingen.;
    [Google Scholar]
  25. Pescovitz M. D., Lunney J. K., Sachs D. H. 1984; Preparation and characterization of monoclonal antibodies reactive with porcine PBL. Journal of Immunology 133:368–375
    [Google Scholar]
  26. Pescovitz M. D., Lunney J. K., Sachs D. H. 1985; Murine antiswine T4 and T8 monoclonal antibodies: distribution and effects on proliferative and cytotoxic T cells. Journal of Immunology 134:37–14
    [Google Scholar]
  27. Reddehase M. J., KoszrNowski U. H. 1984; Significance of herpesvirus immediate early gene expression in cellular immunity to cytomegalovirus infection. Nature 312:369–371
    [Google Scholar]
  28. Reddehase M. J., Jonjic S., Weiland F., Mutter W., Koszinowski U. H. 1988; Adoptive immunotherapy of murine cytomegalovirus adrenalitis in the immunocompromised host: CD4-helper-independent antiviral function of CD8-positive memory T-lymphocytes derived from latently infected donors. Journal of Virology 62:1061–1065
    [Google Scholar]
  29. Rümenapf T., Stark R., Meyers G., Thiel H.-J. 1991; Structural proteins of hog cholera virus expressed by vaccinia virus: further characterization and induction of protective immunity. Journal of Virology 65:589–597
    [Google Scholar]
  30. Saalmüller A., Reddehase M. J., Buhring H. J., Jonjic S., Koszinowski U. H. 1987; Simultaneous expression of CD4 and CD8 antigens by a substantial proportion of resting porcine T-lymphocytes. European Journal of Immunology 17:1297–1301
    [Google Scholar]
  31. Saalmüller A., Weiland F., Reddehase M. J. 1991; Resting porcine T-lymphocytes expressing class II major histocompatibility antigen. Immunobiology 183:102–114
    [Google Scholar]
  32. Saalmüller A., Aasted B., Canals A., Dominguez J., Goldman T., Lunney J. K., Maurer S., Pauly T., Pescovitz M. D., Pospisil R., Salmon H., Trebichavsky I., Valpotic I., Viscaino J. S., Weiland E., Zuckermann F. 1994a; Analyses of MAb reactive with porcine CD6. Veterinary Immunology and Immuno-pathology 43:243–247
    [Google Scholar]
  33. Saalmüller A., Hirt W., Maurer S., Weiland E. 1994b; Discrimination between two subsets of porcine CD8+ cytolytic T-lymphocytes by the expression of CD5 antigen. Immunology 81:578–583
    [Google Scholar]
  34. Sachs D. H., Leight G., Cone J. L., Schwarz S., Stuart L., Rosenberg S. A. 1976; Transplantation in miniature swine: I. Fixation of the major histocompatibility complex. Transplantation 22:559–567
    [Google Scholar]
  35. Scholl T., Lunney J. K., Mebus C. A., Duffy E., Martins C. L. V. 1989; Virus-specific cellular blastogenesis and interleukin-2 production in swine after recovery from african swine fever. American Journal of Veterinary Research 50:1781–1786
    [Google Scholar]
  36. Sethi K. K., Omata Y., Schneweis K. E. 1983; Protection of mice from fatal herpes simplex virus type 1 infection by adoptive transfer of cloned virus-specific and H-2 restricted cytotoxic T-lymphocytes. Journal of General Virology 64:443–147
    [Google Scholar]
  37. Southern P. J., Berg P. 1982; Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. Journal of Molecular Applications in Genetics 1:327–341
    [Google Scholar]
  38. Stark R., Rümenapf T., Meyers G., Thiel H. J. 1990; Genomic localization of hog cholera virus glycoproteins. Virology 174:286–289
    [Google Scholar]
  39. Stark R., Meyers G., Rümenapf T., Thiel H.-J. 1993; Processing of pestivirus polyprotein: cleavage site between autoprotease and nucleocapsid protein of classical swine fever virus. Journal of Virology 67:7088–7095
    [Google Scholar]
  40. Van Zijl M., Wensvoort G., De Kluyver E., Hulst M., Van Der Gulden H., Gielkens A., Berns A., Moormann R. 1991; Live attenuated pseudorabies virus expressing envelope glycoprotein El of hog cholera virus protects swine against both pseudorabies and hog cholera. Journal of Virology 65:2761–2765
    [Google Scholar]
  41. Wengler G. 1991; Family Flaviviridae . In Classification and nomenclature of viruses: Fifth Report of the International Committee of the Taxonomy of Viruses pp 223–233 Edited by Francki R. B. I. Fauquet C. M., Knudson D. L., Brown F. Berlin: Springer Verlag;
    [Google Scholar]
  42. Woldehiwet Z., Hussin A. A. 1994; Cytotoxic T cell responses in lambs experimentally infected with Border disease virus. Veterinary Immunology and Immunopathology 41:201–209
    [Google Scholar]
  43. Yap K. L., Ada G. L., McKenzie I. F. C. 1978; Transfer of specific cytotoxic T lymphocytes protects mice inoculated with influenza virus. Nature 273:238–239
    [Google Scholar]
  44. Zinkernagel R. M., Doherty P. C. 1979; MHC-restricted cytotoxic T cells: studies on the biological role of polymorphic major transplantation antigens determining T-cell restriction-specificity, function, and responsiveness. Advances in Immunology 27:51–117
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-76-12-3039
Loading
/content/journal/jgv/10.1099/0022-1317-76-12-3039
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error