1887

Abstract

An efficient mucosal vaccination has a number of obvious advantages over invasive routes of immunization. The immune response to measles virus (MV) was investigated after intranasal and intragastric coimmunization of mice with cholera toxin B (CTB) as an adjuvant. High titres of virus-specific IgG antibodies and a transient IgA response were detected in the sera after intranasal but not after intragastric immunization when CTB was used. In the presence of CTB, higher titres were reached with less antigen and fewer intranasal boosts. Neutralizing antibodies were found in all animals only after co-immunization with MV and CTB. In the nasal wash and the saliva, IgG and IgA titres were significant only in the MV plus CTB groups; IgG levels were comparable to those found after intraperitoneal (i.p.) immunization with complete Freund’s adjuvant. Specific IgA was detected in the mucosal fluids only after intranasal immunization with MV plus CTB but not after i.p. or intragastric immunization. The antibody response consisted of 99% IgG1 after MV immunization. In the CTB groups 10% IgG2b and 1% IgG2a were detected in addition to the predominant IgG1 antibodies.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-6-1371
1995-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/6/JV0760061371.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-6-1371&mimeType=html&fmt=ahah

References

  1. Beauverger P., Buckland R., Wild F. 1993; Establishment and characterisation of murine cells constitutively expressing the fusion, nucleoprotein and matrix proteins of measles virus. Journal of Virological Methods 44:199–210
    [Google Scholar]
  2. Beauverger P., Buckland R., Wild T. F. 1994; Antigens induce both type-specific and canine distemper virus cross-reactive cytotoxic T lymphocytes in mice: localization of a common Ld-restricted nucleoprotein epitope. Journal of General Virology 74:2357–2363
    [Google Scholar]
  3. Black F. 1989; Measles active and passive immunity in a worldwide perspective. Progress in Medical Virology 36:1–33
    [Google Scholar]
  4. Burlington D. B., Clements M. L., Meiklejohn G., Phelan M., Murphy B. R. 1983; Hemagglutinin-specific antibody responses in immunoglobulin G, A, and M isotypes as measured by enzyme-linked immunosorbent assay after primary or secondary infection of humans with influenza A virus. Infection and Immunity 41:540–545
    [Google Scholar]
  5. Cao M., Sasaki O., Yamada A., Imaniski J. 1992; Enhancement of the protective effect of inactivated influenza virus vaccine by cytokines. Vaccine 10:238–242
    [Google Scholar]
  6. Chen K. S., Quinnan G. V. 1988; Induction, persistence and strain specificity of haemagglutinin-specific secretory antibodies in lungs of mice after intragastric administration of inactivated influenza virus vaccines. Journal of General Virology 69:2779–2784
    [Google Scholar]
  7. Chen K. S., Strober W. 1990; Cholera holotoxin and its B subunit enhance Peyer′s patch B cell responses induced by orally administered influenza virus: disproportionate cholera toxin enhancement of the IgA B cell response. European Journal of Immunology 20:433–436
    [Google Scholar]
  8. Clemens J. D., Sack D. A., Harris J. R., van Loon F., Chakraborty J., Ahmede F., Rao M. R., Yunus M. D., Huda N., Stanton B., Kay B. A., Walsh S., Eckels R., Svennerholm A.-M., Jolmgren J. 1990; Field trials of oral cholera vaccines in Bangladeshi: results from three-year follow-up. Lancet i:270–273
    [Google Scholar]
  9. Clements J. D., Finkelstein R. A. 1979; Isolation and characterization of homogeneous heat-labile enterotoxins with high specific activity from E. coli cultures. Infection and Immunity 24:760–766
    [Google Scholar]
  10. Clements J. D., Hartzog N. M., Lyon F. L. 1988; Adjuvant activity of Escherichia coli heat-labile enterotoxin and effect on the induction of oral tolerance in mice to unrelated protein antigens. Vaccine 6:269–277
    [Google Scholar]
  11. Coutelier J. P., Van Der Logt J. T. M., Heesen F. W. A., Warnier G., Snick J. V. 1988; Virally induced modulation of murine IgG antibody subclasses. Journal of Experimental Medicine 168:2373–2378
    [Google Scholar]
  12. Czerkinsky C., Svennerholm A.-M., Quiding M., Jonsson R., Holmgren J. 1991; Antibody-producing cells in peripheral blood and salivary glands after oral cholera vaccination of humans. Infection and Immunity 59:996–1001
    [Google Scholar]
  13. Czinn S. J., Cai A., Nedrud J. G. 1993; Protection of germ-free mice from infection by Helicobacter felts after active oral or passive IgA immunization. Vaccine 11:637–642
    [Google Scholar]
  14. Dertzbaugh M. T., Peterson D. L., Macrina F. L. 1990; Cholera toxin B subunit gene fusion: structural and functional analysis of the chimeric protein. Infection and Immunity 58:70–79
    [Google Scholar]
  15. De Vries P., Van Binnendijk R. S., Van Der Marel P., van Wezel A. L., Voorma H. O., Sundquist B., Uytdehaag F. G., Osterhaus A. D. 1988; Measles virus fusion protein presented in an immune-stimulating complex (iscom) induces haemolysis-inhibiting and fusion-inhibiting antibodies, virus-specific T cells and protection in mice. Journal of General Virology 69:549–559
    [Google Scholar]
  16. Elson C. O., Ealding W. 1984; Generalized systemic and mucosal immunity in mice after mucosal stimulation with cholera toxin. Journal of Immunology 132:2736
    [Google Scholar]
  17. Friedman M. G., Phillip M., Dagan R. 1989; Virus-specific IgA in serum, saliva, and tears of children with measles. Clinical and Experimental 75:58–63
    [Google Scholar]
  18. Gill D. M., Rappaport R. S. 1979; Origin of the enzymatically active A1 fragment of cholera toxin. Journal of Infectious Diseases 139:674–680
    [Google Scholar]
  19. Giraudon P., Wild T. F. 1985; Correlation between epitopes on hemagglutinin of measles virus and biological activities: passive protection by monoclonal antibodies is related to their hemagglutination inhibiting activity. Virology 144:46–58
    [Google Scholar]
  20. Gonzalez R. A., Sanchez J., Holmgren J., Lopez S., Arias C. F. 1993; Immunological characterization of a rotaviru-neutralizing epitope fused to the cholera toxin B subunit. Gene 133:227–232
    [Google Scholar]
  21. Hirabayashi Y., Kurata H., Funato H., Nagamine T., Aizawa C., Tamura S., Shimada K., Kurata T. 1990; Comparison of intranasal inoculation of influenza HA vaccine combined with cholera toxin B subunit with oral or parenteral vaccination. Vaccine 8:243–248
    [Google Scholar]
  22. Israel B. A., Herber R., Gao Y., Letchworth G. J. 1992; Induction of a mucosal barrier to bovine herpesvirus 1 replication in cattle. Virology 188:256–264
    [Google Scholar]
  23. Jayashree S., Bhan M. K., Kumar R., Raj P., Glass R., Bhandari N. 1988; Serum and salivary antibodies as indicators of rotavirus infection in neonates. Journal of Infectious Diseases 158:1117–1120
    [Google Scholar]
  24. Kapikian A. Z., Mitchell R. H., Chanock R. M., Shvedoff R. A., Stewart C. E. 1969; An epidemiologic study of altered clinical reactivity to respiratory syncytial virus infection in children previously vaccinated with inactivated RS virus vaccine. American Journal of Epidemiology 89:405–421
    [Google Scholar]
  25. Kimman T. G., Westenbrink F. 1990; Immunity to human and bovine respiratory syncytial virus. Archives of Virology 112:1–25
    [Google Scholar]
  26. Lamm M. E. 1976; Cellular aspects of immunoglobulin A. Advances in Immunology 22:223
    [Google Scholar]
  27. Lehner T., Tao L., Panagiotidi C., Klavinskis L. S., Brookes R., Hussain L., Meyers N., Adams S. E., Gearing A. J., Bergmeier L. A. 1994; Mucosal model of genital immunization in male rhesus macaques with a recombinant simian immunodeficiency virus p27 antigen. Journal of Virology 68:1624–1632
    [Google Scholar]
  28. Liang X. P., Lamm M. E., Nedrud J. G. 1988; Oral administration of cholera toxin-Sendai virus conjugate potentiates gut and respiratory immunity against Sendai virus. Journal of Immunology 141:1495–1501
    [Google Scholar]
  29. Lycke N., Holmgren J. 1986; Strong adjuvant properties of cholera toxin on gut mucosal immune responses to orally presented antigens. Immunology 59:301
    [Google Scholar]
  30. Lycke N., Bromander A. K., Ekman L., Karlsson U., Holmgren J. 1989; Cellular basis of immunomodulation by cholera toxin in vitro with possible association to the adjuvant function in vivo. Journal of Immunology 142:20–27
    [Google Scholar]
  31. McKenzie S. J., Halsey J. F. 1984; Cholera toxin B subunit as a carrier protein to stimulate a mucosal immune response. Journal of Immunology 133:1818
    [Google Scholar]
  32. Malvoisin E., Wild F. 1990; Contribution of measles virus fusion protein in protective immunity: anti-F monoclonal antibodies neutralize virus infectivity and protect mice against challenge. Journal of Virology 64:5160–5162
    [Google Scholar]
  33. Mbawuike I. N., Wyde P. R. 1993; Induction of CD8 + cytotoxic T cells by immunization with killed influenza virus and effect of cholera toxin B subunit. Vaccine 11:1205–1213
    [Google Scholar]
  34. Menge A. C., Michalek S. M., Russell M. W., Mestecky J. 1993; Immune response of the female rat genital tract after oral and local immunization with keyhole limpet hemocyanin conjugated to the cholera toxin B subunit. Infection and Immunity 61:2162–2171
    [Google Scholar]
  35. Merz D. C., Scheid A., Choppin P. W. 1980; The importance of antibody to fusion protein of paramyxoviruses in the prevention of spread of infection. Journal of Experimental Medicine 151:275–288
    [Google Scholar]
  36. Murphy B. R., Collins P. L., Lawrence L., Zubak J., Chanock R. M., Prince G. A. 1989; Immunosuppression of the antibody response to respiratory syncytial virus (RSV) by pre-existing serum antibodies: partial prevention by topical infection of the respiratory tract with vaccinia virus-RSV recombinants. Journal of General Virology 70:2185–2190
    [Google Scholar]
  37. Nedrud J. G., Liang X. P., Hague N., Lamm M. E. 1987; Combined oral/nasal immunization protects mice from Sendai virus infection. Journal of Immunology 139:3484–3492
    [Google Scholar]
  38. Newesk S., Brinckmann U., Bankamp B., Sirak S., Lebert U. G., ter Meulen V. 1993; Susceptibility to measles virus-induced encephalitis in mice correlates with impaired antigen presentation to cytotoxic T lymphocytes. Journal of Virology 67:75–81
    [Google Scholar]
  39. Norrby E., Enders-Ruckle G., terMeulen V. 1975; Differences in the appearance of antibodies to structural components of measles after immunization with inactivated and live virus. Journal of Infectious Diseases 132:262–269
    [Google Scholar]
  40. Novak M., Moldoneanu Z., Schafer D. P., Mbstecky J., Compans R. W. 1993; Murine model for evaluation of protective immunity to influenza virus. Vaccine 11:55–60
    [Google Scholar]
  41. Perlmutter R. M., Hansburg D., Briles D. E., Nicolotti R. A., Davie J. M. 1978; Subclass restriction of murine anti-carbohydrate antibodies. Journal of Immunology 121:566
    [Google Scholar]
  42. Reumann P. D., Kjeely S. P., Schiff G. M. 1991a; Similar subclass antibody responses after intranasal immunization with UV-inactivated RSV mixed with cholera toxin or live RSV. Journal of Medical Virology 35:192–197
    [Google Scholar]
  43. Reuman P. D., Keely S. P., Schiff G. M. 1991b; Comparison of class and subclass antibody response to live and UV-inactivated RSV administered intranasally in mice. Journal of Medical Virology 35:198–205
    [Google Scholar]
  44. Rosenberg Y. J., Chiller J. M. 1979; Ability of antigen-specific helper cells to effect a class-restricted increase in total Ig-secreting cells in spleens after immunization with the antigen. Journal of Experimental Medicine 150:517
    [Google Scholar]
  45. Ross L. A., Mason W. K., Lawson J., Deakers T. W., Wewth C. J. 1992; Laryngotracheabronchitis as a complication of measles during an urban epidemic. Journal of Pediatrics 121:511–515
    [Google Scholar]
  46. Sabin A. B., Arechiga A. F., de Castro J. F., Sever J. L., Madden D. L., Shekarchi I., Albrecht P. 1983; Successful immunization of children with and without maternal antibody by aerosolized measles vaccine. Journal of the American Medical Association 249:2651–2662
    [Google Scholar]
  47. Sato T. A., Fukuda A., Sugiura A. 1985; Characterization of major structural proteins of measles virus with monoclonal antibodies. Journal of General Virology 66:1397–1409
    [Google Scholar]
  48. Tamura S., Ito Y., Asanuma H., Hirabayashi Y., Suzuki Y., Nagamine T., Aizawa C., Kurata T. 1992; Cross-protection against influenza virus infection afforded by trivalent inactivated vaccines inoculated intranasally with cholera toxin B subunit. Journal of Immunology 149:981–988
    [Google Scholar]
  49. Taylor J., Weinberg R., Tartaglia J., Richardson C. G., Alkhatib D., Briedis M., Appel N., Paoletti E. 1992; Nonreplicating viral vectors as potential vaccines: recombinant canarypox virus expressing measles virus fusion and hemagglutinin glycoproteins. Virology 187:321–328
    [Google Scholar]
  50. Weisz-Carrington P., Roux M. E., McWilliams M., Phillips-Quagliata J. M., Lamm M. E. 1979; Organ and isotype distribution of plasma cells producing specific antibody after oral immunization. Evidence for a generalized secretory immune system. Journal of Immunology 123:1705
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-76-6-1371
Loading
/content/journal/jgv/10.1099/0022-1317-76-6-1371
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error