1887

Abstract

Although ovine lentiviruses have been described in the United States since the early part of this century, North American strains of sheep lentiviruses remain relatively uncharacterized at the molecular level. The LTR of a North American ovine lentivirus, OLV-CU1, was found to be closely related at the molecular and functional levels to visna virus, the Icelandic ovine lentivirus. Sequence analysis of the LTR revealed high identity to other ovine and caprine lentiviruses in key regulatory elements of the upstream promoter region (-25 to -115). However, the R region of the LTR was much less homologous. Transcriptional control of OLV-CU1 in transient transcriptional assays required a conserved putative AP-4 region and possibly an AP-1 like element in the upstream promoter region for moderate to high levels of transcription, much like visna virus. In contrast to visna virus, the down-stream region beyond the transcriptional start site was required for virus-specific transactivation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-77-12-2999
1996-12-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/77/12/JV0770122999.html?itemId=/content/journal/jgv/10.1099/0022-1317-77-12-2999&mimeType=html&fmt=ahah

References

  1. Campbell B. J., Thompson D., Williams J. R., Campbell G., Avery R. J. 1993; Characterization of a New York ovine lentivirus isolate. Journal of General Virology 74:201–210
    [Google Scholar]
  2. Gabuzda D. H., Hess J. L., Small J. A., Clements J. E. 1989; Regulation of the visna virus long terminal repeat in macrophages involves cellular factors that bind sequences containing AP-1 sites. Molecular and Cellular Biology 9:2728–2733
    [Google Scholar]
  3. Gdovin S. L., Clements J. E. 1992; Molecular mechanisms of visna virus Tat: identification of the targets for transcriptional activation and evidence for a post-transcriptional effect. Virology 188:438–450
    [Google Scholar]
  4. Gourdou I., Mazarin V., Querat G., Sauze N., Vigne R. 1989; The open reading frame S of visna virus genome is a transactivating gene. Virology 171:170–178
    [Google Scholar]
  5. Harmache A., Vitu C., Russo P., Bouyac M., Hieblot C., Peveri P., Vigne R., Suzan M. 1995; The caprine arthritis-encephalitis tat gene is dispensable for efficient viral replication in vitro and in vivo . Journal of Virology 69:5445–5454
    [Google Scholar]
  6. Haseltine W. A. 1991; Molecular biology of the human immunodeficiency virus type 1. FASEB Journal 5:2349–2360
    [Google Scholar]
  7. Hess J. L., Clements J. E., Narayan O. 1985; cis and trans- acting transcriptional regulation of visna virus. Science 229:482–485
    [Google Scholar]
  8. Hess J. L., Pyper J. M., Clements J. E. 1986; Nucleotide sequence and transcriptional activity of the caprine arthritis-encephalitis virus long terminal repeat. Journal of Virology 60:385–393
    [Google Scholar]
  9. Hess J. L., Small J. A., Clements J. E. 1989; Sequences in the visna virus long terminal repeat that control transcriptional activity and respond to viral frans-activation: involvement of AP-I sites in basal activity and frans-activation. Journal of Virology 63:3001–3015
    [Google Scholar]
  10. Higgins D. G., Sharp P. M. 1989; Fast and sensitive multiple sequence alignments on a microcomputer. CABIOS 5:151–153
    [Google Scholar]
  11. Jackson M. K., Knowles D. P., Stem T. A., Harwood W. G., Robinson M. M., Cheevers W. P. 1991; Genetic structure of the pol-env region of the caprine arthritis-encephalitis lentivirus genome. Virology 180:389–394
    [Google Scholar]
  12. Narayan O., Clements J. E. 1989; Biology and pathogenesis of lentiviruses. Journal of General Virology 70:1617–1639
    [Google Scholar]
  13. Querat G., Audoly G., Sonigo P., Vigne R. 1990; Nucleotide sequence analysis of SA-OMVY, a visna-related ovine lentivirus: phylogenetic history of lentiviruses. Virology 175:434–447
    [Google Scholar]
  14. Reed L. J., Muench H. 1938; Simple method of estimating 50 percent endpoints. American Journal of Hygiene 27:493–497
    [Google Scholar]
  15. Saltarelli M., Querat G., Konings D. A., Vigne R., Clements J. E. 1990; Nucleotide sequence and transcriptional analysis of molecular clones of CAEV which generate infectious virus. Virology 179:347–364
    [Google Scholar]
  16. Saltarelli M. J., Schoborg R., Gdovin S. L., Clements J. E. 1993; The CAEV tat gene frans-activates the viral LTR and is necessary for efficient viral replication. Virology 197:35–44
    [Google Scholar]
  17. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  18. Sargan D. R., Bennet I. D., Cousens C., Roy D. J., Blacklaws B. A., Dalziel R. G., Watt N. J., McConnell I. 1991; Nucleotide sequence of EV1, a British isolate of maedi-visna virus. Journal of General Virology 72:1893–1903
    [Google Scholar]
  19. Sonigo P., Alizon M., Staskus K., Klatzmann D., Cole S., Danos O., Retzel E., Tiollais P., Haase A., Wain-Hobson S. 1985; Nucleotide sequence of the visna lentivirus, relationship to the AIDS virus. Cell 42:369–382
    [Google Scholar]
  20. Steffy K., Wong-Staal F. 1991; Genetic regulation of human immunodeficiency virus. Microbiological Reviews 55:193–205
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-77-12-2999
Loading
/content/journal/jgv/10.1099/0022-1317-77-12-2999
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error