1887

Abstract

The Epstein—Barr Virus (EBV) gene BZLF1 encodes the transcription factor EB1 (also known as Zta) which is essential for the switch from latency to the lytic cycle: EB1 expressed from a plasmid transfected into B cell lines carrying latent EBV episomes, induces a productive viral cycle. Furthermore, EB1-specific DNA-binding sequences (ZREs) have been found in the promoters of many EBV early genes, including the BZLF1 promoter PZ and the PR promoter. At promoter PR, bicistronic mRNAs are initiated which contain, from 5′ to 3′, the BRLF1 and the BZLF1 open reading frames (ORFs) encoding respectively the R and EB1 proteins. The current model for the activation of the EBV lytic cycle implies that downregulation of the PZ promoter activity is a key element for latency and that a limiting step in the activation of the productive cycle is the translation of EB1. Once made, EB1 autoactivates promoter PZ, activates the PR promoter at which an mRNA coding for the EBV transcription factor R is initiated and activates the EBV early genes and the ORI, due to unrestricted accessibility of the EB1-responsive elements in the viral genome. We show here that EB1 expressed from a plasmid activated most if not all of the EBV early genes in the viral genome but not its own gene, BZLF1. Moreover, transfected EB1 induced the transcription of the bicistronic mRNAs from which R is efficiently translated but not EB1. Our results demonstrate that EB1 provided in , although competent to activate the productive cycle genes, was not sufficient to overcome the downregulation of the PZ promoter.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-77-3-501
1996-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/77/3/JV0770030501.html?itemId=/content/journal/jgv/10.1099/0022-1317-77-3-501&mimeType=html&fmt=ahah

References

  1. Angel P., Imagawa M., Chiu R., Stein B., Imbra R. J., Rahmsdorf H. J., Jonat C., Herrlich P., Karin M. 1987; Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor. Cell 49:729–739
    [Google Scholar]
  2. Angel P., Hattori K., Smeal T., Karin M. 1988; The Jun protooncogene is positively autoregulated by its product, Jun/AP1. Cell 55:875–885
    [Google Scholar]
  3. Buisson M., Manet E., Biemont M. C., Gruffat H., Durand B., Sergeant A. 1989; The Epstein-Barr virus (EBV) early protein EB2 is a posttranscriptional activator expressed under the control of EBV transcription factors EB1 and R. Journal of Virology 63:5276–5284
    [Google Scholar]
  4. Chavrier P., Gruffat H., Chevallier-Gréco A., Buisson M., Sergeant A. 1989; The Epstein-Barr virus (EBV) early promoter contains a cis-acting element responsive to the EBV transactivator EB1 and an enhancer with constitutive and inducible activities. Journal of Virology 63:607–614
    [Google Scholar]
  5. Chevallier-Gréco A., Manet E., Chavrier P., Mosnier C., Daillie J., Sergeant A. 1986; Both Epstein-Barr virus (EBV) encoded trans-acting factors, EB1 and EB2, are required to activate transcription from an EBV early promoter. EMBO Journal 5:3243–3249
    [Google Scholar]
  6. Chevallier-Gréco A., Gruffat H., Manet E., Calender A., Sergeant A. 1989; The Epstein-Barr virus (EBV) DR enhancer contains two functionally different domains: domain A is constitutive and cell specific, domain B is transactivated by the EBV early protein R. Journal of Virology 63:615–623
    [Google Scholar]
  7. Cho M.-S., Tran V.-M. 1993; A concatenated form of Epstein-Barr viral DNA in lymphoblastoid cell lines induced by transfection with BZLF1. Virology 194:838–842
    [Google Scholar]
  8. Countryman J. K., Jenson H., Grogan E., Miller G. 1989; A 2.7 kb rearranged DNA fragment from Epstein-Barr virus capable of disruption of latency. Cancer Cells 4:517–523
    [Google Scholar]
  9. Daibata M., Humphreys R. E., Sairenji T. 1992; Phosphorylation of the Epstein-Barr virus BZLF1 immediate-early gene product Zebra. Virology 188:916–920
    [Google Scholar]
  10. Farrell P. J., Rowe D. T., Rooney C. M., Kouzarides T. 1989; Epstein-Barr virus BZLF1 transactivator specifically binds to a consensus AP-1 site and is related to c-Fos. EMBO Journal 8:127–132
    [Google Scholar]
  11. Fixman E. D., Hayward G. S., Hayward S. D. 1995; Replication of Epstein-Barr virus oriLyt: lack of a dedicated virally encoded origin-binding protein and dependence on Zta in cotransfection assays. Journal of Virology 69:2998–3006
    [Google Scholar]
  12. Flemington E., Speck S. H. 1990a; Identification of phorbol ester response elements in the promoter of the Epstein-Barr virus putative lytic switch gene BZLF1. Journal of Virology 64:1217–1226
    [Google Scholar]
  13. Flemington E., Speck S. H. 1990b; Autoregulation of Epstein-Barr virus putative lytic cycle switch gene BZLF1. Journal of Virology 64:1227–1232
    [Google Scholar]
  14. Giot J. F., Mikaelian I., Buisson M., Manet E., Joab I., Nicolas J. C., Sergeant A. 1991; Transcriptional interference between the EBV transcription factors EB1 and R: both DNA-binding and activation domains of EB1 are required. Nucleic Acids Research 19:1251–1258
    [Google Scholar]
  15. Glisin V., Crkvenjakov R., Byus C. 1974; Ribonucleic acid isolated by cesium chloride centrifugation. Biochemistry 13:2633–2639
    [Google Scholar]
  16. Gorman C. M., Moffat L. F., Howard B. H. 1982; Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Molecular and Cellular Biology 2:1044–1051
    [Google Scholar]
  17. Gruffat H., Manet E., Rigolet A., Sergeant A. 1990; The enhancer factor R of Epstein-Barr virus (EBV) is a sequence-specific DNA binding protein. Nucleic Acids Research 18:6835–6843
    [Google Scholar]
  18. Gutsch D. E., Holley-Guthrie E. A., Zhang Q., Stein B., Blanar M. A., Baldwin A. S., Kenney S. C. 1994; The bZIP transactivator of Epstein-Barr virus, BZLF1, functionally and physically interacts with the p65 subunit of NF-κ B. Molecular and Cellular Biology 14:1939–1948
    [Google Scholar]
  19. Hardwick J. M., Lieberman P. M., Hayward S. D. 1988; A new Epstein-Barr virus transactivator, R, induces expression of a cytoplasmic early antigen. Journal of Virology 62:2274–2284
    [Google Scholar]
  20. Hunter T., Karin M. 1992; The regulation of transcription by phosphorylation. Cell 70:375–387
    [Google Scholar]
  21. Ito Y., Kawanishi M., Harayama T., Takabayashi S. 1981; Combined effect of the extracts from Croton tiglium, Euphorbia lathyris or Euphorbia tirucalli and n-butyrate on Epstein-Barr virus expression in human lymphoblastoid P3HR-1 and Raji cells. Cancer Letters 12:175–180
    [Google Scholar]
  22. Kenney S., Kamine J., Holley-Guthrie E., Lin J. C., Mar E. C., Pagano J. 1989; The Epstein-Barr virus (EBV) BZLF1 immediate-early gene product differentially affects latent versus productive EBV promoters. Journal of Virology 63:1729–1736
    [Google Scholar]
  23. Klehr D., Schlake T., Maass K., Bode J. 1992; Scaffold-attached regions (SAR elements) mediate transcriptional effects due to butyrate. Biochemistry 31:3223–3229
    [Google Scholar]
  24. Kolman J. L., Taylor N., Marshak D. R., Miller G. 1993; Serine-173 of the Epstein-Barr virus ZEBRA protein is required for DNA binding and is a target for casein kinase II phosphorylation. Proceedings of the National Academy of Sciences, USA 90:10115–10119
    [Google Scholar]
  25. Laux G., Freese U. K., Fischer R., Polack E., Kofler E., Bornkamm G. W. 1988; TPA-inducible Epstein-Barr virus genes in Raji cells and their regulation. Virology 162:503–507
    [Google Scholar]
  26. Lieberman P. M., Hardwick J. M., Hayward S. D. 1989; Responsiveness of the Epstein-Barr virus Notl repeat promoter to the Z transactivator is mediated in a cell-type-specific manner by two independent signal regions. Journal of Virology 63:3040–3050
    [Google Scholar]
  27. Liebowitz D., Kieff E. 1993; Epstein-Barr virus. In Virology pp 107–172 Edited by Fields B. N., Knipe D. M. New York: Raven Press;
    [Google Scholar]
  28. Manet E., Gruffat H., Trescol-Biemont M. C., Moreno N., Chambard P., Giot J. F., Sergeant A. 1989; Epstein-Barr virus bicistronic tnRNA generated by facultative splicing code for two transcriptional trans-activators. EMBO Journal 8:1819–1826
    [Google Scholar]
  29. Mikaelian I., Drouet E., Marechal V., Denoyel G., Nicolas J. C., Sergeant A. 1993; The DNA-binding domain of two bZIP transcription factors, the Epstein-Barr virus switch gene product EB1 and Jun, is a bipartite nuclear targeting sequence. Journal of Virology 67:734–742
    [Google Scholar]
  30. Montalvo E. A., Cottam M., Hill S. Wang Y.-C. J. 1995; YY1 binds to and regulates cis-acting negative elements in the Epstein-Barr virus BZLF1 promoter. Journal of Virology 69:4158–4165
    [Google Scholar]
  31. Prang N., Wolf H., Schwarzmann F. 1995; Epstein-Barr virus lytic replication is controlled by posttranscriptional negative regulation of BZLF1. Journal of Virology 69:2644–2648
    [Google Scholar]
  32. Rooney C. M., Rowe D. T., Ragot T., Farrell P. J. 1989; The spliced BZLF1 gene of Epstein-Barr virus (EBV) transactivates an early EBV promoter and induces the virus productive cycle. Journal of Virology 63:3109–3116
    [Google Scholar]
  33. Schepers A., Pich D., Hammerschmidt W. 1993; Transcription factor with homology to the AP-1 family links RNA transcription and DNA replication in the lytic cycle of Epstein-Barr virus. EMBO Journal 12:3921–3929
    [Google Scholar]
  34. Schwarzmann F., Prang N., Reichelt B., Rinkes B., Haist S., Marschall M., Wolf H. 1994; Negatively c/v-acting elements in the distal part of the promoter of Epstein-Barr virus transactivator gene BZLF1. Journal of General Virology 75:1999–2006
    [Google Scholar]
  35. Sinclair A. J., Brimmel M., Shanahan F., Farrell P. J. 1991; Pathways of activation of the Epstein-Barr virus productive cycle. Journal of Virology 65:2237–2244
    [Google Scholar]
  36. Sista N. D., Pagano J. S., Liao W., Kenney S. 1993; Retinoic acid is a negative regulator of the Epstein-Barr virus protein (BZLF1) that mediates disruption of latent infection. Proceedings of the National Academy of Sciences, USA 90:3894–3898
    [Google Scholar]
  37. Sista N. D., Barry C., Sampson K., Pagano J. 1995; Physical and functional interaction of the Epstein-Barr virus BZLF1 transactivator with the retinoic acid receptors RARα and RXRα. Nucleic Acids Research 23:1729–1736
    [Google Scholar]
  38. Takada K., Shimizu N., Sakuma S., Ono Y. 1986; Transactivation of the latent Epstein-Barr virus (EBV) genome after transfection of the EBV DNA fragment. Journal of Virology 57:1016–1022
    [Google Scholar]
  39. Urier G., Buisson M., Chambard P., Sergeant A. 1989; The Epstein-Barr virus early protein EB1 activates transcription from different responsive elements including AP-1 binding sites. EMBO Journal 8:1447–1453
    [Google Scholar]
  40. Zhang Q., Gutsch D., Kenney S. 1994; Functional and physical interaction between p53 and BZLF1. Implication for Epstein-Barr virus latency. Molecular and Cellular Biology 14:1929–1938
    [Google Scholar]
  41. Zur Hausen H., O’Neil E. J., Freese U. K., Hecher E. 1978; Persisting oncogenic herpes-virus induced by tumour promoter TPA. Nature 272:373–375
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-77-3-501
Loading
/content/journal/jgv/10.1099/0022-1317-77-3-501
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error