1887

Abstract

In view of the high antigenic variability of human immunodeficiency virus type 1 (HIV-1), a vaccine against AIDS must induce an immune response to epitopes as invariable as possible among the various virus strains and clones. Previously the highly conserved six amino acid sequence Glu-Leu-Asp-Lys-Trp-Ala (ELDKWA) from gp41, defining the epitope of the human MAb 2F5, was shown to elicit HIV-1-neutralizing antibodies when presented on haemagglutinin of influenza virus. We investigated the immunogenic potential of the MAb 2F5 epitope and two of its major escape epitopes as internal fusions to the hepatitis B virus (HBV) surface antigen (HBsAg). Recombinant HBsAg-HIV proteins produced in the methylotrophic yeast self-assembled into 22 nm lipoprotein particles. Mice immunized with these particles developed an anti-HBsAg immune response in a range that is considered to be protective against HBV infection in humans. More importantly, antisera had extremely high titres of antibodies reactive with a structurally flexible form of the HIV-1 epitope, whereby strong cross-reactivity with the escape variants of the epitope was observed. Although HIV-1 gp160 and the ectodomain of gp41 containing the epitope were significantly recognized, the antisera failed to neutralize HIV-1 . These data, together with those on the haemagglutinin-ELDKWAS fusion suggest that the ability of the MAb 2F5 epitope to induce neutralizing antibodies depends on the molecular context in which it is presented. Therefore, further characterization of secondary and tertiary structure requirements of the epitope is indispensable for the full exploitation of its potential as a vaccine component.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-77-9-2001
1996-09-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/77/9/JV0770092001.html?itemId=/content/journal/jgv/10.1099/0022-1317-77-9-2001&mimeType=html&fmt=ahah

References

  1. Araki K., Shiosaki K., Araki M., Chiasaka O., Matsubara K. 1990; The essential region for assembly and particle formation in hepatitis B virus surface antigen produced in yeast cells. Gene 89:195–201
    [Google Scholar]
  2. Buchacher A., Predl P., Strutzenberger K., Steinfellner W., Trkola A., Purtscher M., Gruber G., Tauer C., Steindl F., Jungbauer A., Katinger H. 1994; Generation of novel human monoclonal antibodies against HIV-1 proteins; electrofusion and EBV-transformation for PBL-immortalization. AIDS Research and Human Retroviruses 10:359–369
    [Google Scholar]
  3. Christman J. K., Gerber M., Price P. M., Flordellis C., Edelman J., Acs G. 1982; Amplification of expression of hepatitis B surface antigen in 3T3 cells cotransfected with a dominant-acting gene and cloned viral DNA. Proceedings of the National Academy of Sciences, USA 79:1815–1819
    [Google Scholar]
  4. Clare J. J., Rayment F. B., Ballantine S. P., Sreekrishna K., Romanos M. A. 1991; High level expression of tetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integrations of the gene. Bio/Technology 9:455–460
    [Google Scholar]
  5. Cregg J. M., Barringer K. J., Hessler A. Y., Madden K. R. 1985; Pichia pastoris as a host system for transformations. Molecular and Cellular Biology 5:3376–3385
    [Google Scholar]
  6. Cregg J. M., Tschopp J. F., Stillman C., Siegel R., Akong M., Craig W. S., Buckholz R. G., Madden K. R., Kellaris P. A., Davis G. R., Smiley B. S., Cruze J., Torregrossa R., Velicebeli G., Thill G. P. 1987; High-level expression and efficient assembly of hepatitis B surface antigen in the methylotrophic yeast, Pichia pastoris . Bio/Technology 5:479–485
    [Google Scholar]
  7. Delpeyroux F., Chenciner N., Lim A., Malpiece Y., Blondel B., Crainic R., Van Der Werf S., Streek R. F. 1986; A poliovirus neutralization epitope expressed on hybrid hepatitis B surface antigen particles. Science 233:472–475
    [Google Scholar]
  8. Delpeyroux F., Van Wezel E., Blondei B., Crainic R. 1990; Structural factors modulate the activity of antigenic poliovirus sequences expressed on hybrid hepatitis B surface antigen particles. Journal of Virology 64:1836–1839
    [Google Scholar]
  9. Evans D. J., McKeating J., Meredith J. M., Burke K. L., Katrak K., John A., Ferguson M., Minor P. D., Weiss R. A., Almond J. W. 1989; An engineered poliovirus chimaera elicits broadly reactive HIV-1 neutralizing antibodies. Nature 339:385–388
    [Google Scholar]
  10. Gallaher W. R., Ball J. M., Garry R. F., Griffin M. C., Montelaro M.C. 1989; A general model for the transmembrane proteins of HIV and other retroviruses. AIDS Research and Human Retroviruses 5:431–440
    [Google Scholar]
  11. Gómez-Gutiérrez J., Rodríguez-Crespo I., González-Ros J., Ferragut J. A., Paul D. A., Peterson D. L., Gavilanes F. 1992; Thermal stability of hepatitis B surface antigen S proteins. Biochimica et Biophysica Acta 1119:225–231
    [Google Scholar]
  12. Gurunath R., Beena T. K., Adiga P. R., Balaram P. 1995; Enhancing peptide antigenicity by helix stabilization. FEBS Letters 361:176–178
    [Google Scholar]
  13. Hopp T. P., Woods K. R. 1981; Prediction of protein antigenic determinants from amino acid sequences. Proceedings of the National Academy of Sciences, USA 78:3824–3828
    [Google Scholar]
  14. Lim L., Ho J. X., Keeling K., Gilliland J. L., Ji X., Rüker F., Carter C. 1994; The three-dimensional structure of glutathione-S-trans-ferase of Schistosoma japonicum fused with a conserved neutralizing epitope of human immunodeficiency virus type 1. Protein Science 3:2233–2244
    [Google Scholar]
  15. McLain L., Porta C., Lomonossoff G. P., Durrani Z., Dimmock N. 1995; Human immunodeficiency virus type 1-neutralizing antibodies raised to a glycoprotein 41 peptide expressed on the surface of a plant virus. AIDS Research and Human Retroviruses 11:327–334
    [Google Scholar]
  16. Morrisey J. H. 1981; Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Analytical Biochemistry 117:307–310
    [Google Scholar]
  17. Muster T., Steindl F., Purtscher M., Trkola A., Klima A., Himmler G., Riiker F., Katinger H. 1993a; A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. Journal of Virology 67:6642–6647
    [Google Scholar]
  18. Muster T., Trkola A., Purtscher M., Klima A., Guinea R., Steindl F., Palese P., Katinger H. 1993b; A gp41-specific epitope presented by a chimeric influenza virus elicits broadly neutralizing antibodies against HIV-1. In Vaccine ′94 Edited by Norrby E., Brown F., Chanock R. M., Ginsberg H. S. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  19. Muster T., Guinea R., Trkola A., Purtscher M., Klima A., Steindl F., Palese P., Katinger H. 1994; Cross-neutralizing activity against divergent HIV-1 isolates induced by the gp41-sequence ELDKWAS. Journal of Virology 68:4031–4034
    [Google Scholar]
  20. Novotny J., Auffrey C. 1984; A program for prediction of protein secondary structure from nucleotide sequence data: application to histocompatibility antigens. Nucleic Acids Research 12:243–255
    [Google Scholar]
  21. Purtscher M., Trkola A., Gruber G., Buchacher A., Predl P., Steindl F., Tauer C., Berger R., Barrett N., Jungbauer A., Katinger H. 1994; A broadly neutralizing human monoclonal antibody against gp41 of human immunodeficiency virus type 1. AIDS Research and Human Retroviruses 10:1651–1658
    [Google Scholar]
  22. Purtscher M., Trkola A., Grassauer A., Schulz P. M., Klima A., Dopper S., Gruber G., Buchacher A., Muster T., Katinger H. 1996; Restricted antigenic variability of the epitope recognized by the neutralizing gp41 antibody 2F5. AIDS (in press)
    [Google Scholar]
  23. Robinson W. E. Jr, Gorny M. K., Xu J. Y., Mitchell W. M., Zolla-Pazner S. 1991; Two immunodominant domains of gp41 bind antibodies which enhance immunodeficiency virus type 1 infection in vitro . Journal of Virology 65:4169–4176
    [Google Scholar]
  24. Wild C., Greenwell T., Shugars D., Rimsky-Clarke L., Matthews T. 1995; The inhibitory activity of an HIV type 1 peptide correlates with its ability to interact with a leucine zipper structure. AIDS Research and Human Retroviruses 11:323–325
    [Google Scholar]
  25. Zagury D., Bernard J., Cheynier R., Desportes I., Leonard R., Fouchard M., Reveil B., Ittele D., Lurhuma Z., Mbayo K., Wane J., Salaun J., Goussard B., Dechazal B., Burny A., Nara P., Gallo R. C. 1988; A group-specific anamnestic immune reaction against HIV induced by a candidate vaccine against AIDS. Nature 332:728–731
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-77-9-2001
Loading
/content/journal/jgv/10.1099/0022-1317-77-9-2001
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error