1887

Abstract

We have developed a panel of 14 monoclonal antibodies (MAbs) to POL, the catalytic subunit of herpes simplex virus type 1 (HSV-1) DNA polymerase encoded by gene UL30, and one MAb to the UL52 protein, another of the seven proteins essential for replication of HSV DNA. The approximate locations of the epitopes of the polymerase-specific MAbs were identified using truncated polymerase molecules, and the antibodies were characterized in a number of immunological assays allowing eight different specificities to be recognized. These MAbs, together with a polyclonal antibody raised in rabbits against a third DNA replication protein, ICP8, were used to localize the respective proteins by immunofluorescence in cells infected with wild-type HSV-1 or the DNA replication-defective mutants UL8 or 2-2. In BHK cells infected with UL8, a mutant with an amber termination codon within the coding region of gene UL8, the UL52 protein did not enter the nucleus, although ICP8 and POL entered the nucleus in a normal fashion. The failure of the UL52 protein to be correctly transported to the nucleus was also observed in both HFL and Vero cells infected with UL8. In contrast, UL52 protein was transported to the nucleus in BHK cells infected with wild-type HSV-1 or with 2-2, a mutant lacking a functional UL9 protein.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-77-9-2241
1996-09-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/77/9/JV0770092241.html?itemId=/content/journal/jgv/10.1099/0022-1317-77-9-2241&mimeType=html&fmt=ahah

References

  1. Baines J. D., Roizman B. 1991; The open reading frames UL3, UL4, UL10 and UL16 are dispensable for the replication of herpes simplex virus type 1 in cell culture. Journal of Virology 65:938–944
    [Google Scholar]
  2. Brown S. M., Ritchie D. A., Subak-Sharpe J. H. 1973; Genetic studies with herpes simplex virus type 1. The isolation of temperature-sensitive mutants, their arrangement into complementation groups and recombination analysis leading to a linkage map. Journal of General Virology 18:329–346
    [Google Scholar]
  3. Calder J. M., Stow N. D. 1990; Herpes simplex virus helicase–primase: the UL8 protein is not required for DNA-dependent ATPase and DNA helicase activities. Nucleic Acids Research 18:3573–3578
    [Google Scholar]
  4. Calder J. M., Stow E. C., Stow N. D. 1992; On the cellular localization of the components of the herpes simplex virus type 1 helicase–primase complex and the viral origin-binding protein. Journal of General Virology 73:531–538
    [Google Scholar]
  5. Challberg M. D. 1991; Herpes simplex virus DNA replication. Seminars in Virology 2:247–256
    [Google Scholar]
  6. Crute J. J., Tsurumi T., Zhu L., Weller S. K., Olivo P. D., Challberg M. D., Mocarski E. S., Lehman I. R. 1989; Herpes simplex virus 1 helicase–primase: a complex of three herpes-encoded gene products. Proceedings of the National Academy of Sciences, USA 86:2186–2189
    [Google Scholar]
  7. Crute J. J., Bruckner R. C., Dodson M. S., Lehman I. R. 1991; Herpes simplex 1 helicase-primase. Identification of two nucleocapsid triphosphatase sites that promote DNA helicase action. Journal of Biological Chemistry 266:21252–21256
    [Google Scholar]
  8. Dargan D. J., Patel A. H., Subak-Sharpe J. H. 1995; Herpes simplex virus type 1-specific particles produced by infected cells when viral DNA replication is blocked. Journal of Virology 69:4924–4932
    [Google Scholar]
  9. Dodson M. S., Lehman I. R. 1991; Association of DNA helicase and primase activities with a subassembly of the herpes simplex virus 1 helicase-primase composed of the UL5 and UL52 gene products. Proceedings of the National Academy of Sciences, USA 88:1105–1109
    [Google Scholar]
  10. Dodson M. S., Crute J. J., Bruckner R. C., Lehman I. R. 1989; Overexpression and assembly of the herpes simplex virus type 1 helicase-primase in insect cells. Journal of Biological Chemistry 264:20835–20838
    [Google Scholar]
  11. Dracheva S., Koonin E. V., Crute J. J. 1995; Identification of the primase active site of the herpes simplex virus type 1 helicase-primase. Journal of Biological Chemistry 270:14148–14153
    [Google Scholar]
  12. Gorbalenya A. E., Koonin E. V., Donchenko A. P., Blinov V. M. 1989; Two related families of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Research 17:4713–4730
    [Google Scholar]
  13. Gottlieb J., Marcy A. I., Coen D. M., Challberg M. D. 1990; The herpes simplex virus type 1 UL42 gene product: a subunit of DNA polymerase that functions to increase processivity. Journal of Virology 64:5976–5987
    [Google Scholar]
  14. Klinedinst D. K., Challberg M. D. 1994; Helicase-primase complex of herpes simplex virus type 1: a mutation in the UL52 subunit abolishes primase activity. Journal of Virology 68:3693–3701
    [Google Scholar]
  15. Liptak L. M., Uprichard S. L., Knipe D. M. 1996; Functional order of assembly of herpes simplex virus DNA replication proteins into prereplicative site structures. Journal of Virology 70:1759–1767
    [Google Scholar]
  16. Lukonis C. J., Weller S. K. 1996; Characterization of nuclear structures in cells infected with herpes simplex virus type 1 in the absence of viral DNA replication. Journal of Virology 70:1751–1758
    [Google Scholar]
  17. Marsden H. S., Murphy M., McVey G. L., MacEachran K. A., Owsianka A. M., Stow N. D. 1994; Role of the carboxy terminus of herpes simplex virus type 1 DNA polymerase in its interaction with UL42. Journal of General Virology 75:3127–3135
    [Google Scholar]
  18. MacLean C. A., Efstathiou S., Elliott M. L., Jamieson F. E., McGeoch D. J. 1991; Investigation of herpes simplex virus type 1 genes encoding multiply inserted membrane proteins. Journal of Genera! Virology 72:897–906
    [Google Scholar]
  19. McLean G. W., Abbotts A. P., Parry M. E., Marsden H. S., Stow N. D. 1994; The herpes simplex virus type 1 origin-binding protein interacts specifically with the viral UL8 protein. Journal of General Virology 75:2699–2706
    [Google Scholar]
  20. Patel A. H., Rixon F. J., Cunningham C., Davison A. J. 1996a; Isolation and characterization of herpes simplex virus mutants defective in the UL6 gene. Virology 217:111–123
    [Google Scholar]
  21. Patel A. H., Subak-Sharpe J. H., Stow N. D., Marsden H. S., MacLean J. B., Dargan D. J. 1996b; Suppression of amber nonsense mutations of herpes simplex virus type 1 in a tissue culture system. Journal of General Virology 77:199–209
    [Google Scholar]
  22. Possee R. D., Howard S. C. 1987; Analysis of the polyhedrin gene promoter of the Autographa californica nuclear polyhedrosis virus. Nucleic Acids Research 15:10233–10248
    [Google Scholar]
  23. Quinlan M. P., Chen L. B., Knipe D. M. 1984; The intranuclear localization of a herpes simplex virus DNA binding protein is determined by the status of viral DNA replication. Cell 36:857–868
    [Google Scholar]
  24. Scheaffer A. K., Hurlburt W. W., Stevens J. T., Bifano M., Hamatake R. K., Colonno R. J., Tenney D. J. 1995; Characterization of monoclonal antibodies recognizing amino- and carboxy-terminal epitopes of the herpes simplex virus UL42 protein. Virus Research 38:305–314
    [Google Scholar]
  25. Schenk P., Pietschmann S., Gelderblom H., Pauli G., Ludwig H. 1988; Monoclonal antibodies agains herpes simplex virus type 1-infected nuclei defining and localizing the ICP8 protein, 65K DNA-binding protein and polypeptides of the ICP35 family. Journal of General Virology 69:99–111 corrigendum 967
    [Google Scholar]
  26. Sherman G., Gottlieb J., Challberg M. D. 1992; The UL8 subunit of the herpes simplex virus helicase-primase complex is required for efficient primer utilization. Journal of Virology 66:4884–4892
    [Google Scholar]
  27. Stow N. D. 1982; Localization of an origin of DNA replication within the TRs/IRs repeated region of the herpes simplex type 1 genome. EMBO Journal 1:863–867
    [Google Scholar]
  28. Stow N. D. 1992; Herpes simplex virus type 1 origin-dependent DNA replication in insect cells using recombinant baculoviruses. Journal of General Virology 73:313–321
    [Google Scholar]
  29. Stow N. D. 1993; Sequences at the C-terminus of the herpes simplex virus type 1 UL30 protein are dispensable for DNA polymerase activity but not for viral origin-dependent DNA replication. Nucleic Acids Research 21:87–92
    [Google Scholar]
  30. Tenney D. J., Hurlburt W. W., Bifano M., Stevens J. T., Micheletti P. A., Hamatake R. K., Cordingley M. G. 1993; Deletions of the carboxy terminus of herpes simplex virus type 1 UL42 define a conserved amino-terminal functional domain. Journal of Virology 67:1959–1966
    [Google Scholar]
  31. Tenney D. J., Hurlburt W. W., Micheletti P. A., Bifano M., Hamatake R. K. 1994; The UL8 component of the herpes simplex virus helicase-primase complex stimulates primer synthesis by a subassembly of the UL5 and UL52 components. Journal of Biological Chemistry 269:5030–5035
    [Google Scholar]
  32. Tenney D. J., Scheaffer A. K., Hurlburt W. W., Bifano M., Hamatake R. K. 1995; Sequence-dependent primer synthesis by the herpes simplex virus helicase-primase complex. Journal of Biological Chemistry 270:9129–9136
    [Google Scholar]
  33. Weller S. K. 1991; Genetic analysis of HSV genes required for genome replication. In Herpesvirus Transcription and its Regulation pp 105–135 Edited by Wagner E. K. Boca Raton: CRC Press;
    [Google Scholar]
  34. Weller S. K., Spadaro A., Schaffer J. E., Murray A. W., Maxam A. M., Schaffer P. A. 1985; Cloning, sequencing, and functional analysis of ori L, a herpes simplex virus type 1 origin of DNA synthesis. Molecular and Cellular Biology 5:930–942
    [Google Scholar]
  35. Whu C. A., Nelson N. J., McGeoch D. J., Challberg M. D. 1988; Identification of herpes simplex virus type 1 genes required for origin-dependent DNA synthesis. Journal of Virology 62:435–443
    [Google Scholar]
  36. Zhu L., Weller S. K. 1992; The six conserved helicase motifs of the UL5 gene product, a component of the herpes simplex virus type 1 helicase primase, are essential for its function. Journal of Virology 66:469–479
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-77-9-2241
Loading
/content/journal/jgv/10.1099/0022-1317-77-9-2241
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error