1887

Abstract

Aminopeptidase N (APN) is the major cell surface receptor for group 1 coronaviruses. In this study, we have isolated and characterized a feline APN cDNA and shown that the transfection of human embryonic kidney cells with this cDNA renders them susceptible to infection with the feline coronavirus feline infectious peritonitis virus, the human coronavirus (HCV) 229E and the porcine coronavirus porcine transmissible gastroenteritis virus. By using chimeric APN genes, assembled from porcine and feline sequences, we have shown that, analogously to the human APN protein, a region within the amino-terminal part of the feline APN protein (encompassing amino acids 132–295) is essential for its HCV 229E receptor function. Furthermore, by comparing the relevant feline, human and porcine APN sequences, we were able to identify a hypervariable stretch of eight amino acids that are more closely related in the feline and human APN proteins than in the porcine APN molecule. Using PCR- directed mutagenesis, we converted this stretch of amino acids within the porcine APN molecule to the corresponding residues of the human APN molecule. These changes were sufficient to convert porcine APN into a functional receptor for HCV 229E and thus define a small number of residues that are critically important for the HCV 229E receptor function of human APN.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-78-11-2795
1997-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/78/11/9367365.html?itemId=/content/journal/jgv/10.1099/0022-1317-78-11-2795&mimeType=html&fmt=ahah

References

  1. Barlough J. E., Stoddart C. A., Sorresso G. P., Jacobson R. H., Scott F. W. 1984; Experimental inoculation of cats with canine coronavirus and subsequent challenge with feline enteric coronavirus isolates. Laboratory Animal Science 34:592–597
    [Google Scholar]
  2. Barlough J. E., Johnson-Lussenburg C. M., Stoddart C. A., Jacobson R. H., Scott F. W. 1985; Experimental inoculation of cats with human coronavirus 229E and subsequent challenge with feline infectious peritonitis virus. Canadian Journal of Comparative Medicine 49:303–307
    [Google Scholar]
  3. Benbacer L., Kut E., Besnardeau L., Laude H., Delmas B. 1997; Interspecies aminopeptidase-N chimeras reveal species-specific receptor recognition by canine coronavirus, feline infectious peritonitis virus, and transmissible gastroenteritis virus. Journal of Virology 71:734–737
    [Google Scholar]
  4. Chen C., Okayama H. 1987; High efficiency transformation of mammalian cells by plasmid DNA. Molecular and Cellular Biology 7:2745–2752
    [Google Scholar]
  5. de Groot R. J., Horzinek M. C. 1995; Feline infectious peritonitis. In The Coronaviridae pp. 293–315 Siddell S. G. Edited by New York & London: Plenum Press;
    [Google Scholar]
  6. de Groot R. J., Haar R. T. J., Horzinek M. C., van der Zeijst B. A. M. V. 1987; Intracellular RNAs of the feline peritonitis coronavirus strain 79-1146. Journal of General Virology 68:995–1002
    [Google Scholar]
  7. Delmas B., Gelfi J., I’Haridon R., Vogel L. K., Sjostrom H., Noren O., Laude H. 1992; Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV. Nature 357: 417–20
    [Google Scholar]
  8. Delmas B., Gelfi J., Sjostrom H., Noren O., Laude H. 1993; Further characterization of aminopeptidase-N as a receptor for corona-viruses. Advances in Experimental Medicine and Biology 342:293–298
    [Google Scholar]
  9. Delmas B., Gelfi J., Kut E., Sjostrom H., Noren O., Laude H. 1994; Determinants essential for the transmissible gastroenteritis virus-receptor interaction reside within a domain of aminopeptidase-N that is distinct from the enzymatic site. Journal of Virology 68: 5216–5224
    [Google Scholar]
  10. Garwes D. J. 1995; Pathog enesis of the porcine coronaviruses. In The Coronaviridae pp. 377–388 Siddell S. G. Edited by NewYork & London: Plenum Press;
    [Google Scholar]
  11. Grosse B., Siddell S. G. 1994; Singl e amino acid changes in the S2 subunit of the MHV surface glycoprotein confer resistance to neutralization by S1 subunit-specific monoclonal antibody. Virology 202:814–824
    [Google Scholar]
  12. Horzinek M. C., Lutz H., Pedersen N. C. 1982; Antigenic relationships among homologous structural polypeptides of porcine, feline and canine coronaviruses. Infection and Immunity 37:1148–1155
    [Google Scholar]
  13. Kolb A. F., Siddell S. G. 1996; Genomic targeting with an MBP-Cre fusion protein. Gene 183:53–60
    [Google Scholar]
  14. Kolb A. F., Gunzburg W. H., Albang R., Brem G., Erfle V., Salmons B. 1994; Negative regulatory element in the mammary specific whey acidic protein promoter. Journal of Cellular Biochemistry 56: 245–261
    [Google Scholar]
  15. Kolb A. F., Maile J., Heister A., Siddell S. G. 1996; Characterization of functional domains in the human coronavirus HCV 229E receptor. Journal of General Virology 77:2515–2521
    [Google Scholar]
  16. Myint S. H. 1995; Human coronavirus infections. In The Coronaviridae pp. 389–401 Siddell S. G. Edited by New York & London: Plenum Press;
    [Google Scholar]
  17. Olsen J., Cowell G. M., Konigshofer E., Danielsen E. M., Moller J., Laustsen L., Hansen O. C., Welinder K. G., Engberg J., Hunziker W., Spiess M., Sjöström H., Noren O. 1988; Complete amino acid sequence of human intestinal aminopeptidase N as deduced from cloned cDNA. FEBS Letters 238:307–314
    [Google Scholar]
  18. Pedersen N. C., Ward J., Mengeling W. E. 1978; Antigenic relationship of the feline infectious peritonitis virus to coronaviruses of other species. Archives of Virology 58:45–53
    [Google Scholar]
  19. Pedersen N. C., Boyle J. F., Floyd K. 1981; Infection studies in kittens, using feline infectious peritonitis virus propagated in cell culture. American Journal of Veterinary Research 42:363–367
    [Google Scholar]
  20. Raabe T., Schelle-Prinz B., Siddell S. G. 1990; Nucleotide sequence of the gene encoding the spike glycoprotein of human coronavirus HCV 229E. Journal of General Virology 71:1065–1073
    [Google Scholar]
  21. Sanchez C. M., Jimenez G., Laviada M. D., Correa I., Suné C., María J. B., Gebauer F., Smerdou C., Callebaut P., Escribano J. M., Enjuanes L. 1990; Antigenic homology among coronaviruses related to transmissible gastroenteritis virus. Virology 174:410–417
    [Google Scholar]
  22. Siddell S. G. 1995; The Coronaviridae: an introduction. In The Coronaviridae pp. 1–10 Siddell S. G. Edited by New York: Plenum Press;
    [Google Scholar]
  23. Tresnan D. B., Levis R., Holmes K. V. 1996; Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I. Journal of Virology 70:8669–8674
    [Google Scholar]
  24. Yeager C. L., Ashmun R. A., Williams R. K., Cardellichio C. B., Shapiro L. H., Look A. T., Holmes K. V. 1992; Human amino- peptidase N is a receptor for human coronavirus 229E. Nature 357:420–422
    [Google Scholar]
  25. Ziebuhr J. 1995 Expression der 3C-like-Proteinase des humanen Coronavirus HCV 229E PhD thesis University of Wurzburg, Germany:
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-78-11-2795
Loading
/content/journal/jgv/10.1099/0022-1317-78-11-2795
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error