1887

Abstract

The monoclonal antibody (MAb) 5B19.2, which has virus-neutralizing and fusion inhibition activities, binds to an epitope (S2A) consisting of nine hydrophobic amino acids in the S2 subunit of the mouse hepatitis virus (MHV) spike (S) protein. This suggests that the S2A epitope may be involved in binding the virus to the MHV receptor and/or in virus–cell fusion. Co-immunoprecipitation analyses demonstrated that while the binding of virus to the receptor was blocked by anti-S1 MAbs, it was not blocked by the S2A antiserum, indicating that S2A was not involved in receptor-binding. The S proteins prepared in this study with mutations in the S2A epitope were either fusogenic or non-fusogenic and their fusogenicity did not correlate with the hydrophobic feature of the S2A epitope. All of these wt and mutated S proteins were similarly transported onto the cell membrane independent of their fusogenicity capability. These results suggest that S2A may mediate the fusion activity of the MHV S protein during virus entry into cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-12-2867
2000-12-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/12/0812867a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-12-2867&mimeType=html&fmt=ahah

References

  1. Armstrong S. J., McInerney T. L., McLain L., Wahren B., Hinkula J., Levi M., Dimmock N. J. 1996; Two neutralizing anti-V3 monoclonal antibodies act by affecting different functions of human immunodeficiency virus type 1. Journal of General Virology 77:2931–2941
    [Google Scholar]
  2. Boireau P., Cruciere C., Laporte J. 1990; Nucleotide sequence of the glycoprotein S gene of bovine enteric coronavirus and comparison with the S proteins of two mouse hepatitis virus strains. Journal of General Virology 71:487–492
    [Google Scholar]
  3. Bos E. C. W., Heijnen L., Luytjes W., Spaan W. J. M. 1995; Mutational analysis of the murine coronavirus spike protein: effect on cell-to-cell fusion. Virology 214:453–463
    [Google Scholar]
  4. Bosch M. L., Earl P. L., Fargnoli F., Picciafuoco S., Giombini S., Wong-Staal F., Franchini G. 1989; Identification of the fusion peptide of primate immunodeficiency viruses. Science 244:694–697
    [Google Scholar]
  5. Collins A. R., Knobler R. L., Powell H., Buchmeier M. J. 1982; Monoclonal antibodies to murine hepatitis virus-4 (strain JHM) define the viral glycoprotein responsible for attachment and cell fusion. Virology 119:358–371
    [Google Scholar]
  6. Daniel C., Anderson R., Buchmeier M. J., Fleming J. O., Spaan W. J. M., Wege H., Talbot P. J. 1993; Identification of an immunodominant linear neutralization domain on the S2 portion of the murine coronavirus spike glycoprotein and evidence that it forms part of a complex tridimensional structure. Journal of Virology 67:1185–1194
    [Google Scholar]
  7. De Groot R. J., Luytjes W., Horzinek M. C., van der Zeijst B. A. M., Spaan W. J. M., Lenstra J. A. 1987; Evidence for a coiled-coil structure in the spike of coronaviruses. Journal of Molecular Biology 196:963–966
    [Google Scholar]
  8. Dveksler G. S., Pensiero M. N., Cardellichio C. B., Williams R. K., Jiang G., Holmes K. V., Diffenbach C. W. 1991; Cloning of the mouse hepatitis virus (MHV) receptor: expression in human and hamster cell lines confers susceptibility to MHV. Journal of Virology 65:6881–6891
    [Google Scholar]
  9. Fuerst T. R., Niles E. G., Studier F. W., Moss B. 1986; Eukaryotic transient expression system based on recombinant vaccinia virus that synthesizes T7 RNA polymerase. Proceedings of the National Academy of Sciences, USA 83:8122–8126
    [Google Scholar]
  10. Gallagher T. M. 1996; Murine coronavirus membrane fusion is blocked by modification of thiols buried within the spike protein. Journal of Virology 70:4683–4690
    [Google Scholar]
  11. Gallagher T. M., Escarmis C., Buchmeier M. J. 1991; Alteration of the pH dependence of coronavirus-induced cell fusion: effect of mutations in the spike glycoprotein. Journal of Virology 65:1916–1928
    [Google Scholar]
  12. Gething J.-J., Doms R. W., York D., White J. M. 1986; Studies on the mechanism of membrane fusion: site-specific mutagenesis of the haemagglutinin of influenza virus. Journal of Cell Biology 107:2059–2073
    [Google Scholar]
  13. Hernandez L. D., White J. M. 1998; Mutational analysis of the candidate internal fusion peptide of the avian leukosis and sarcoma virus subgroup A envelope glycoprotein. Journal of Virology 72:3259–3263
    [Google Scholar]
  14. Koolen J. J. M., Borst M. A., Horzinek J. M. C., Spaan W. J. M. 1990; Immunogenic peptide comprising a mouse hepatitis virus A59 B-cell epitope and an influenza virus T-cell epitope protects against lethal infection. Journal of Virology 64:6270–6273
    [Google Scholar]
  15. Kubo H., Takase-Yoden S., Taguchi F. 1993; Neutralization and fusion inhibition activities of monoclonal antibodies specific for the S1 subunit of the spike protein of neurovirulent murine coronavirus JHMV cl-2 variant. Journal of General Virology 74:1421–1425
    [Google Scholar]
  16. Kubo H., Yamada Y. K., Taguchi F. 1994; Localization of neutralizing epitopes and the receptor-binding site within the amino-terminal 330 amino acids of the murine coronavirus spike protein. Journal of Virology 68:5403–5410
    [Google Scholar]
  17. Kunita S., Zhang L., Homberger F. R., Compton S. R. 1995; Molecular characterization of the S proteins of two enterotropic murine coronavirus strains. Virus Research 35:277–289
    [Google Scholar]
  18. Luo Z., Weiss S. R. 1998; Roles in cell–cell fusion of two conserved hydrophobic regions in the murine coronavirus spike protein. Virology 244:483–494
    [Google Scholar]
  19. Luytjes W. D., Sturman L. S., Bredenbeek P. J., Charite J., van der Zeijst B. A. M., Horzinek M. C., Spaan W. J. M. 1987; Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsin cleavage site. Virology 161:479–487
    [Google Scholar]
  20. Luytjes W., Geerts D., Posthumus W., Meloen R., Spaan W. J. M. 1989; Amino acid sequence of a conserved neutralizing epitope of murine coronaviruses. Journal of Virology 63:1408–1412
    [Google Scholar]
  21. Mounir S., Talbot P. J. 1993; Molecular characterization of the S protein gene of human coronavirus OC43. Journal of General Virology 74:1981–1987
    [Google Scholar]
  22. Nussbaum O., Broder C. C., Berger E. A. 1994; Fusogenic mechanisms of enveloped-virus glycoproteins analyzed by a novel recombinant vaccinia virus-based assay quantitating cell fusion-dependent reporter gene activation. Journal of Virology 68:5411–5422
    [Google Scholar]
  23. Ohtsuka N., Yamada Y. K., Taguchi F. 1996; Difference in virus-binding activity of two distinct receptor proteins for mouse hepatitis virus. Journal of General Virology 77:1683–1692
    [Google Scholar]
  24. Outlaw M. C., Dimmock N. J. 1993; IgG-neutralization of type A influenza viruses and the inhibition of the endosomal fusion stage of the infectious pathway in BHK cells. Virology 195:413–421
    [Google Scholar]
  25. Parker S. E., Gallagher T. M., Buchmeier M. J. 1989; Sequence analysis reveals extensive polymorphism and evidence of deletions within the E2 glycoprotein gene of several strains of murine hepatitis virus. Virology 173:664–673
    [Google Scholar]
  26. Parker M. D., Yoo D., Cox G. J., Babiuk L. A. 1990; Primary structure of the S peplomer gene of bovine coronavirus and surface expression in insect cells. Journal of General Virology 71:263–270
    [Google Scholar]
  27. Saeki K., Ohtsuka N., Taguchi F. 1997; Identification of spike protein residues of murine coronavirus responsible for receptor-binding activity by use of soluble receptor-resistant mutants. Journal of Virology 71:9024–9031
    [Google Scholar]
  28. Schmidt I., Skinner M., Siddell S. 1987; Nucleotide sequence of the gene encoding the surface projection glycoprotein of coronavirus MHV-JHM. Journal of General Virology 68:47–56
    [Google Scholar]
  29. Skinner M. A., Langlois A. J., McDanal C. B., McDougal J. S., Bolognesi D. P., Matthews T. J. 1988; Neutralizing antibodies to an immunodominant envelope sequence do not prevent gp120 binding to CD4. Journal of Virology 62:4195–4200
    [Google Scholar]
  30. Sturman L. S., Ricard C. A., Holmes K. V. 1985; Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: activation of cell-fusing activity of virions by trypsin and separation of two different 90K cleavage fragments. Journal of Virology 56:904–911
    [Google Scholar]
  31. Suzuki H., Taguchi F. 1996; Analysis of the receptor-binding site of murine coronavirus spike glycoprotein. Journal of Virology 70:2632–2636
    [Google Scholar]
  32. Taguchi F. 1993; Fusion formation by uncleaved spike protein of murine coronavirus JHMV variant cl-2. Journal of Virology 67:1195–1202
    [Google Scholar]
  33. Taguchi F. 1995; The S2 subunit of the murine coronavirus spike protein is not involved in receptor-binding. Journal of Virology 69:7260–7263
    [Google Scholar]
  34. Taguchi F., Siddell S. G., Wege H., ter Meulen V. 1985; Characterization of a variant virus selected in rat brain after infection by coronavirus mouse hepatitis virus JHM. Journal of Virology 54:429–435
    [Google Scholar]
  35. Taguchi F., Ikeda T., Shida H. 1992; Molecular cloning and expression of a spike protein of neurovirulent murine coronavirus JHMV variant cl-2. Journal of General Virology 73:1065–1072
    [Google Scholar]
  36. Talbot P. J., Buchmeier M. J. 1985; Antigenic variation among murine coronaviruses: evidence for polymorphism on the peplomer glycoprotein, E2. Virus Research 2:317–328
    [Google Scholar]
  37. White J. M. 1990; Viral and cellular membrane fusion proteins. Annual Review in Physiology 52:675–697
    [Google Scholar]
  38. Yamada Y. K., Yabe M. 2000; Sequence analysis of major structural proteins of newly isolated mouse hepatitis virus. Experimental Animals 49:61–66
    [Google Scholar]
  39. Yamada Y. K., Takimoto K., Yabe M., Taguchi F. 1997; Acquired fusion activity of a murine coronavirus MHV-2 variant with mutations in the proteolytic cleavage site and the signal sequence of the S protein. Virology 227:215–219
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-12-2867
Loading
/content/journal/jgv/10.1099/0022-1317-81-12-2867
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error