1887

Abstract

We present a maximum likelihood (ML) analysis of the selection pressures that have shaped the evolution of the large (L) protein and the haemagglutinin (H) glycoprotein of measles virus (MV). A number of amino acid sites that have potentially been subject to adaptive evolution were identified in the H protein using sequences from every known genotype of MV. All but one of these putative positively selected sites reside within the ectodomain of the H protein, where they often show an association with positions of potential B-cell epitopes and sites known to interact with the CD46 receptor. This suggests that MV may be under pressure from the immune system, albeit relatively weakly, to alter sites within epitopes and hence evade the humoral immune response. The positive selection identified at amino acid 546 was shown to correlate with the passage history of MV isolates in Vero cells. We reveal that Vero cell passaging has the potential to introduce an artificial signal of adaptive evolution through selection for changes that increase affinity for the CD46 receptor.

Erratum

An erratum has been published for this content:
Immune and artificial selection in the haemagglutinin (H) glycoprotein of measles virus
Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-10-2463
2001-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/10/0822463a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-10-2463&mimeType=html&fmt=ahah

References

  1. Bartz R., Brinckmann U., Dunster L. M., Rima B., ter Meulen V., Schneider-Schaulies J. 1996; Mapping amino acids of the measles virus hemagglutinin responsible for receptor (CD46) downregulation. Virology 224:334–337
    [Google Scholar]
  2. Boom R., Sol C. J., Salimans M. M., Jansen C. L., Wertheim-van Dillen P. M., van der Noordaa J. 1990; Rapid and simple method for purification of nucleic acids. Journal of Clinical Microbiology 28:495–503
    [Google Scholar]
  3. Cattaneo R., Schmid A., Eschle D., Baczko K., Termeulen V., Billeter M. A. 1988; Biased hypermutation and other genetic changes in defective measles viruses in human brain infections. Cell 55:255–265
    [Google Scholar]
  4. El Kasmi K. C., Fillon S., Theisen D. M., Hartter H., Brons N. H. C., Muller C. P. 2000; Neutralization of measles virus wild type isolates after immunization with a synthetic peptide vaccine which is not recognized by neutralizing passive antibodies. Journal of General Virology 81:729–735
    [Google Scholar]
  5. Griffin D. E., Bellini W. J. 1996; Measles virus. In Fields Virology pp 1267–1312 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia: Lippincott-Raven;
    [Google Scholar]
  6. Hsu E. C., Sarangi F., Iorio C., Sidhu M. S., Udem S. A., Dillehay D. L., Xu W. B., Rota P. A., Bellini W. J., Richardson C. D. 1998; A single amino acid change in the hemagglutinin protein of measles virus determines its ability to bind CD46 and reveals another receptor on marmoset B cells. Journal of Virology 72:2905–2916
    [Google Scholar]
  7. Hu A. Z., Sheshberadaran H., Norrby E., Kovamees J. 1993; Molecular characterization of epitopes on the measles virus hemagglutinin protein. Virology 192:351–354
    [Google Scholar]
  8. Hu A. H., Cattaneo R., Schwartz S., Norrby E. 1994; Role of N -linked oligosaccharide chains in the processing and antigenicity of measles virus hemagglutinin protein. Journal of General Virology 75:1043–1052
    [Google Scholar]
  9. Jacobson S., Richert J. R., Biddison W. E., Satinsky A., Hartzman R. J., McFarland H. F. 1984; Measles virus-specific T4+ human cytotoxic T-cell clones are restricted by class II HLA antigens. Journal of Immunology 133:754–757
    [Google Scholar]
  10. Jacobson S., Sekaly R. P., Jacobson C. L., McFarland H. F., Long E. O. 1989; HLA class II-restricted presentation of cytoplasmic measles virus antigens to cytotoxic T-cells. Journal of Virology 63:1756–1762
    [Google Scholar]
  11. Jaye A., Magnusen A. F., Whittle H. C. 1998; Human leukocyte antigen class I- and class II-restricted cytotoxic T-lymphocyte responses to measles antigens in immune adults. Journal of Infectious Diseases 177:1282–1289
    [Google Scholar]
  12. Jin L., Richards A., Brown D. W. G. 1996; Development of a dual target-PCR for detection and characterization of measles virus in clinical specimens. Molecular and Cellular Probes 10:191–200
    [Google Scholar]
  13. Jin L., Knowles W. A., Rota P. A., Bellini W. J., Brown D. W. G. 1998; Genetic and antigenic characterisation of the haemagglutinin protein of measles virus strains recently circulating in the UK. Virus Research 55:107–113
    [Google Scholar]
  14. Komase K., Haga T., Yoshikawa Y., Sato T. A., Yamanouchi K. 1990; Molecular analysis of structural protein genes of the Yamagata-1 strain of defective subacute sclerosing panencephalitis virus. III. Nucleotide sequence of the hemagglutinin gene. Virus Genes 4:163–172
    [Google Scholar]
  15. Komase K., Rima B. K., Pardowitz I., Kunz C., Billeter M. A., ter Meulen V., Baczko K. 1995; A comparison of nucleotide sequences of measles virus L genes derived from wild-type viruses and SSPE brain tissues. Virology 208:795–799
    [Google Scholar]
  16. Kreth H. W., ter Meulen V., Eckert G. 1979; Demonstration of HLA restricted killer cells in patients with acute measles. Medical Microbiology and Immunology 165:203–214
    [Google Scholar]
  17. Lamb R. A. 1993; Paramyxovirus fusion: a hypothesis for changes. Virology 197:1–11
    [Google Scholar]
  18. Lamb A. L., Kolakofsky D. 1996; Paramyxoviridae : the viruses and their replication. In Fields Virology pp 577–604 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia: Lippincott-Raven;
    [Google Scholar]
  19. Langedijk J. P. M., Daus F. J., van Oirschot J. T. 1997; Sequence and structure alignment of Paramyxoviridae attachment proteins and discovery of enzymatic activity for a morbillivirus hemagglutinin. Journal of Virology 71:6155–6167
    [Google Scholar]
  20. Lecouturier V., Fayolle J., Caballero M., Carabana J., Celma M. L., Fernandez-Munoz R., Wild T. F., Buckland R. 1996; Identification of two amino acids in the hemagglutinin glycoprotein of measles virus (MV) that govern hemadsorption, HeLa cell fusion, and CD46 downregulation: phenotypic markers that differentiate vaccine and wild-type MV strains. Journal of Virology 70:4200–4204
    [Google Scholar]
  21. Li L. Y., Qi Y. P., Watanabe M., Ueda S. 1999; Important amino acid in the hemagglutinin glycoprotein measles virus (MV) that governs hemadsorption. Chinese Science Bulletin 44:612–617
    [Google Scholar]
  22. Liebert U. G. 1997; Measles virus infections of the central nervous system. Intervirology 40:176–184
    [Google Scholar]
  23. Lucas C. J., Biddison W. E., Nelson D. L., Shaw S. 1982; Killing of measles virus-infected cells by human cytotoxic T-cells. Infection and Immunity 38:226–232
    [Google Scholar]
  24. McChesney M. B., Miller C. J., Rota P. A., Zhu Y. D., Antipa L., Lerche N. W., Ahmed R., Bellini W. J. 1997; Experimental measles. I. Pathogenesis in the normal and the immunized host. Virology 233:74–84
    [Google Scholar]
  25. Manchester M., Eto D. S., Valsamakis A., Liton P. B., Fernandez-Munoz R., Rota P. A., Bellini W. J., Forthal D. N., Oldstone M. B. A. 2000; Clinical isolates of measles virus use CD46 as a cellular receptor. Journal of Virology 74:3967–3974
    [Google Scholar]
  26. Muller C. P., Schroeder T., Tu R., Brons N. H. C., Jung G., Schneider F., Wiesmuller K. H. 1993; Analysis of the neutralizing antibody response to the measles virus using synthetic peptides of the hemagglutinin protein. Scandinavian Journal of Immunology 38:463–471
    [Google Scholar]
  27. Muse S. V. 1996; Estimating synonymous and nonsynonymous substitution rates. Molecular Biology and Evolution 13:105–114
    [Google Scholar]
  28. Nanan R., Carstens C., Kreth H. W. 1995; Demonstration of virus specific CD8+ memory T-cells in measles seropositive individuals by in vitro peptide stimulation. Clinical and Experimental Immunology 102:40–45
    [Google Scholar]
  29. Nei M., Gojobori T. 1986; Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Molecular Biology and Evolution 3:418–426
    [Google Scholar]
  30. Obeid O. E., Partidos C. D., Steward M. W. 1993; Identification of helper T-cell antigenic sites in mice from the hemagglutinin glycoprotein of measles virus. Journal of General Virology 74:2549–2557
    [Google Scholar]
  31. Obeid O. E., Partidos C. D., Steward M. W. 1994; Analysis of the antigenic profile of measles virus hemagglutinin in mice and humans using overlapping synthetic peptides. Virus Research 32:69–84
    [Google Scholar]
  32. Ogura H., Matsunaga I., Takano Y., Ning X. J., Ayata M., Tanaka K., Seto T., Furukawa K., Ito N., Shingai M., Kimura T., Ichihara K., Kubo H., Murakami T. 2000; Cell surface expression of immature H glycoprotein in measles virus-infected cells. Virus Research 66:187–196
    [Google Scholar]
  33. Patterson J. B., Scheiflinger F., Manchester M., Yilma T., Oldstone M. B. A. 1999; Structural and functional studies of the measles virus hemagglutinin: identification of a novel site required for CD46 interaction. Virology 256:142–151
    [Google Scholar]
  34. Peeples M. E. 1991; Paramyxovirus M proteins: pulling it all together and taking it on the road. In The Paramyxoviruses pp 427–456 Edited by Kingsbury D. W. New York: Plenum;
    [Google Scholar]
  35. Richert J. R., McFarland H. F., McFarlin D. E., Johnson A. H., Woody J. N., Hartzman R. J. 1985; Measles-specific T-cell clones derived from a twin with multiple sclerosis: genetic restriction studies. Journal of Immunology 134:1561–1566
    [Google Scholar]
  36. Rima B. K., Earle J. A. P., Baczko K., ter Meulen V., Liebert U. G., Carstens C., Carabana J., Caballero M., Celma M. L., Fernandez-Munoz R. 1997; Sequence divergence of measles virus haemagglutinin during natural evolution and adaptation to cell culture. Journal of General Virology 78:97–106
    [Google Scholar]
  37. Rivailler P., Trescol-Biemont M. C., Gimenez C., Rabourdin-Combe C., Horvat B. 1998; Enhanced MHC class II-restricted presentation of measles virus (MV) hemagglutinin in transgenic mice expressing human MV receptor CD46. European Journal of Immunology 28:1301–1314
    [Google Scholar]
  38. Rota J. S., Hummel K. B., Rota P. A., Bellini W. J. 1992; Genetic variability of the glycoprotein genes of current wild-type measles isolates. Virology 188:135–142
    [Google Scholar]
  39. Rota J. S., Wang Z. D., Rota P. A., Bellini W. J. 1994; Comparison of sequences of the H, F, and N coding genes of measles virus vaccine strains. Virus Research 31:317–330
    [Google Scholar]
  40. Rota J. S., Heath J. L., Rota P. A., King G. E., Celma M. L., Carabana J., Fernandez-Munoz R., Brown D. W. G., Jin L., Bellini W. J. 1996; Molecular epidemiology of measles virus: identification of pathways of transmission and implications for measles elimination. Journal of Infectious Diseases 173:32–37
    [Google Scholar]
  41. Sakata H., Kurita M., Murakami Y., Nagasawa S., Watanabe M., Ueda S., Matsumoto M., Sato T., Kobune F., Seya T. 1998; A wild-type Japanese measles virus strain inducing predominant early down-regulation of CD46. Biological & Pharmaceutical Bulletin 21:1121–1127
    [Google Scholar]
  42. Schneider-Schaulies S., Schneider-Schaulies J., Dunster L. M., ter Meulen V. 1995; Measles virus gene expression in neural cells. Current Topics in Microbiology and Immunology 191:101–116
    [Google Scholar]
  43. Schnorr J. J., Dunster L. M., Nanan R., Schneider-Schaulies J., Schneider-Schaulies S., ter Meulen V. 1995; Measles virus induced down regulation of CD46 is associated with enhanced sensitivity to complement mediated lysis of infected cells. European Journal of Immunology 25:976–984
    [Google Scholar]
  44. Sethi K. K., Stroehmann I., Brandis H. 1982; Generation of cytolytic T-cell cultures displaying measles virus specificity and human histocompatibility leukocyte antigen restriction. Infection and Immunity 36:657–661
    [Google Scholar]
  45. Swofford D. L. 2000; Phylogenetic Analysis Using Parsimony (*and other methods). Version 4:0b6 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  46. Tamin A., Rota P. A., Wang Z. D., Heath J. L., Anderson L. J., Bellini W. J. 1994; Antigenic analysis of current wild type and vaccine strains of measles virus. Journal of Infectious Diseases 170:795–801
    [Google Scholar]
  47. Tatsuo H., Ono N., Tanaka K., Yanagi Y. 2000; SLAM (CDw150) is a cellular receptor for measles virus. Nature 406:893–897
    [Google Scholar]
  48. Thompson J. D., Higgins D. G., Gibson T. J. 1994; ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22:4673–4680
    [Google Scholar]
  49. van Binnendijk R. S., Poelen M. C., Kuijpers K. C., Osterhaus A. D., Uytdehaag F. G. 1990; The predominance of CD8+ T-cells after infection with measles virus suggests a role for CD8+ class I MHC-restricted cytotoxic T-lymphocytes (CTL) in recovery from measles. Clonal analyses of human CD8+ class I MHC-restricted CTL. Journal of Immunology 144:2394–2399
    [Google Scholar]
  50. Woelk C. H., Holmes E. C. 2001; Variable immune-driven natural selection in the attachment (G) glycoprotein of respiratory syncytial virus (RSV. Journal of Molecular Evolution 52:182–192
    [Google Scholar]
  51. World Health Organization 1998; Expanded programme on immunization – standardization of the nomenclature for describing the genetic characteristics for wild-type measles virus. Weekly Epidemiological Report 73:265–269
    [Google Scholar]
  52. Xie M. F., Tanaka K., Ono N., Minagawa H., Yanagi Y. 1999; Amino acid substitutions at position 481 differently affect the ability of the measles virus hemagglutinin to induce cell fusion in monkey and marmoset cells co-expressing the fusion protein. Archives of Virology 144:1689–1699
    [Google Scholar]
  53. Yang Z. H. 1997; PAML: a program package for phylogenetic analysis by maximum likelihood. Computer Applications in the Biosciences 13:555–556
    [Google Scholar]
  54. Yang Z. H. 1998; Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Molecular Biology and Evolution 15:568–573
    [Google Scholar]
  55. Yang Z. H., Bielawski J. P. 2000; Statistical methods for detecting molecular adaptation. Trends in Ecology & Evolution 15:496–503
    [Google Scholar]
  56. Yang Z. H., Nielsen R., Goldman N., Pedersen A. M. K. 2000; Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431–449
    [Google Scholar]
  57. Zanotto P. M., Kallas E. G., de Souza R. F., Holmes E. C. 1999; Genealogical evidence for positive selection in the nef gene of HIV-1. Genetics 153:1077–1089
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-10-2463
Loading
/content/journal/jgv/10.1099/0022-1317-82-10-2463
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error