1887

Abstract

The coronavirus genome is a positive-strand RNA of extraordinary size and complexity. It is composed of approximately 30000 nucleotides and it is the largest known autonomously replicating RNA. It is also remarkable in that more than two-thirds of the genome is devoted to encoding proteins involved in the replication and transcription of viral RNA. Here, a reverse-genetic system is described for the generation of recombinant coronaviruses. This system is based upon the transcription of infectious RNA from a cDNA copy of the human coronavirus 229E genome that has been cloned and propagated in vaccinia virus. This system is expected to provide new insights into the molecular biology and pathogenesis of coronaviruses and to serve as a paradigm for the genetic analysis of large RNA virus genomes. It also provides a starting point for the development of a new class of eukaryotic, multi-gene RNA vectors that are able to express several proteins simultaneously.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-6-1273
2001-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/6/0821273a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-6-1273&mimeType=html&fmt=ahah

References

  1. Almazán F., González J. M., Pénzes Z., Izeta A., Calvo E., Plana-Durán J., Enjuanes L. 2000; Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome. Proceedings of the National Academy of Sciences, USA 97:5516–5521
    [Google Scholar]
  2. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. D., Smith J. A., Struhl K. (editors) 1987; Current Protocols in Molecular Biology . New York: John Wiley;
    [Google Scholar]
  3. Bredenbeek P. J., Rice C. M. 1992; Animal RNA virus expression systems. Seminars in Virology 3:297–310
    [Google Scholar]
  4. Cowley J. A., Dimmock C. M., Spann K. M., Walker P. J. 2000; Gill-associated virus of Penaeus monodon prawns: an invertebrate virus with ORF1a and ORF1b genes related to arteri- and coronaviruses. Journal of General Virology 81:1473–1484
    [Google Scholar]
  5. Fischer F., Stegen C. F., Koetzner C. A., Masters P. S. 1997; Analysis of a recombinant mouse hepatitis virus expressing a foreign gene reveals a novel aspect of coronavirus transcription. Journal of Virology 71:5148–5160
    [Google Scholar]
  6. Herold J., Raabe T., Schelle-Prinz B., Siddell S. G. 1993; Nucleotide sequence of the human coronavirus 229E RNA polymerase locus. Virology 195:680–691
    [Google Scholar]
  7. Herold J., Thiel V., Siddell S. G. 1998; A strategy for the generation of infectious RNAs and autonomously replicating RNAs based on the HCV 229E genome. Advances in Experimental Medicine and Biology 440:265–268
    [Google Scholar]
  8. Hsue B., Masters P. S. 1999; Insertion of a new transcriptional unit into the genome of mouse hepatitis virus. Journal of Virology 73:6128–6135
    [Google Scholar]
  9. Izeta A., Smerdou C., Alonso S., Pénzes Z., Mendez A., Plana-Durán J., Enjuanes L. 1999; Replication and packaging of transmissible gastroenteritis coronavirus-derived synthetic minigenomes. Journal of Virology 73:1535–1545
    [Google Scholar]
  10. Kuo L., Godeke G. J., Raamsman M. J., Masters P. S., Rottier P. J. 2000; Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: crossing the host cell species barrier. Journal of Virology 74:1393–1406
    [Google Scholar]
  11. Lai M. M. C., Cavanagh D. 1997; The molecular biology of coronaviruses. Advances in Virus Research 48:1–100
    [Google Scholar]
  12. McIntosh K. 1996; Coronaviruses. In Fields Virology pp 1095–1103 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  13. Mackett M., Smith G. L., Moss B. 1985; The construction and characterisation of vaccinia virus recombinants expressing foreign genes. In DNA Cloning: a Practical Approach pp 191–211 Edited by Glover D. M. Oxford: IRL Press;
    [Google Scholar]
  14. Mandl C. W., Aberle J. H., Aberle S. W., Holzmann H., Allison S. L., Heinz F. X. 1998; In vitro-synthesized infectious RNA as an attenuated live vaccine in a flavivirus model. Nature Medicine 4:1438–1440
    [Google Scholar]
  15. Masters P. S. 1999; Reverse genetics of the largest RNA viruses. Advances in Virus Research 53:245–264
    [Google Scholar]
  16. Mawassi M., Satyanarayana T., Gowda S., Albiach-Marti M. R., Robertson C., Dawson W. O. 2000; Replication of heterologous combinations of helper and defective RNA of citrus tristeza virus. Virology 267:360–369
    [Google Scholar]
  17. Mayr A., Malicki K. 1966; Attenuation of virulent fowlpox virus in tissue culture and characteristics of the attenuated virus. Zentralblatt für Veterinärmedizin 13:1–13 (in German
    [Google Scholar]
  18. Meinkoth J., Wahl G. 1984; Hybridization of nucleic acids immobilized on solid supports. Analytical Biochemistry 138:267–284
    [Google Scholar]
  19. Merchlinsky M., Moss B. 1992; Introduction of foreign DNA into the vaccinia virus genome by in vitro ligation: recombination-independent selectable cloning vectors. Virology 190:522–526
    [Google Scholar]
  20. Moss B. 1996; Poxviridae : the viruses and their replication. In Fields Virology pp 2637–2671 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  21. Myint S., Harmsen D., Raabe T., Siddell S. G. 1990; Characterization of a nucleic acid probe for the diagnosis of human coronavirus 229E infections. Journal of Medical Virology 31:165–172
    [Google Scholar]
  22. Raabe T., Siddell S. 1989a; Nucleotide sequence of the human coronavirus HCV 229E mRNA 4 and mRNA 5 unique regions. Nucleic Acids Research 17:6387
    [Google Scholar]
  23. Raabe T., Siddell S. G. 1989b; Nucleotide sequence of the gene encoding the membrane protein of human coronavirus 229 E. Archives of Virology 107:323–328
    [Google Scholar]
  24. Raabe T., Schelle-Prinz B., Siddell S. G. 1990; Nucleotide sequence of the gene encoding the spike glycoprotein of human coronavirus HCV 229E. Journal of General Virology 71:1065–1073
    [Google Scholar]
  25. Repass J. F., Makino S. 1998; Importance of the positive-strand RNA secondary structure of a murine coronavirus defective interfering RNA internal replication signal in positive-strand RNA synthesis. Journal of Virology 72:7926–7933
    [Google Scholar]
  26. Ruggli N., Rice C. M. 1999; Functional cDNA clones of the Flaviviridae : strategies and applications. Advances in Virus Research 53:183–207
    [Google Scholar]
  27. Sawicki S. G., Sawicki D. L. 1998; A new model for coronavirus transcription. Advances in Experimental Medicine and Biology 440:215–219
    [Google Scholar]
  28. Siddell S. G., Snijder E. J. 1998; Coronaviruses, toroviruses and arteriviruses. In Topley & Wilson’s Microbiology and Microbial Infections pp 463–484 Edited by Mahy B. W. J., Collier L. London: Arnold;
    [Google Scholar]
  29. Smith G. L., Moss B. 1983; Infectious poxvirus vectors have capacity for at least 25000 base pairs of foreign DNA. Gene 25:21–28
    [Google Scholar]
  30. Spaan W., Delius H., Skinner M., Armstrong J., Rottier P., Smeekens S., van der Zeijst B. A., Siddell S. G. 1983; Coronavirus mRNA synthesis involves fusion of non-contiguous sequences. EMBO Journal 2:1839–1844
    [Google Scholar]
  31. Stalcup R. P., Baric R. S., Leibowitz J. L. 1998; Genetic complementation among three panels of mouse hepatitis virus gene 1 mutants. Virology 241:112–121
    [Google Scholar]
  32. Thiel V., Rashtchian A., Herold J., Schuster D. M., Guan N., Siddell S. G. 1997; Effective amplification of 20-kb DNA by reverse transcription PCR. Analytical Biochemistry 252:62–70
    [Google Scholar]
  33. van Marle G., Dobbe J. C., Gultyaev A. P., Luytjes W., Spaan W. J., Snijder E. J. 1999; Arterivirus discontinuous mRNA transcription is guided by base pairing between sense and antisense transcription-regulating sequences. Proceedings of the National Academy of Sciences, USA 96:12056–12061
    [Google Scholar]
  34. Williams G. D., Chang R. Y., Brian D. A. 1999; A phylogenetically conserved hairpin-type 3′ untranslated region pseudoknot functions in coronavirus RNA replication. Journal of Virology 73:8349–8355
    [Google Scholar]
  35. Yount B., Curtis K. M., Baric R. S. 2000; Strategy for systematic assembly of large RNA and DNA genomes: transmissible gastroenteritis virus model. Journal of Virology 74:10600–10611
    [Google Scholar]
  36. Ziebuhr J., Snijder E. J., Gorbalenya A. E. 2000; Virus-encoded proteinases and proteolytic processing in the Nidovirales . Journal of General Virology 81:853–879
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-6-1273
Loading
/content/journal/jgv/10.1099/0022-1317-82-6-1273
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error