1887

Abstract

Numerous virus families utilize endocytosis to infect host cells, mediating virus internalization as well as trafficking to the site of replication. Recent research has demonstrated that viruses employ the full endocytic capabilities of the cell. The endocytic pathways utilized include clathrin-mediated endocytosis, caveolae, macropinocytosis and novel non-clathrin, non-caveolae pathways. The tools to study endocytosis and, consequently, virus entry are becoming more effective and specific as the amount of information on endocytic component structure and function increases. The use of inhibitory drugs, although still quite common, often leads to non-specific disruptions in the cell. Molecular inhibitors in the form of dominant–negative proteins have surpassed the use of chemical inhibitors in terms of specificity to individual pathways. Dominant–negative molecules are derived from both structural proteins of endocytosis, such as dynamin and caveolin, and regulatory proteins, primarily small GTPases and kinases. This review focuses on the experimental approaches taken to examine virus entry and provides both classic examples and recent research on a variety of virus families.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-7-1535
2002-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/7/0831535a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-7-1535&mimeType=html&fmt=ahah

References

  1. Anderson H. A., Chen Y., Norkin L. C. 1996; Bound simian virus 40 translocates to caveolin-enriched membrane domains, and its entry is inhibited by drugs that selectively disrupt caveolae. Molecular Biology of the Cell 7:1825–1834
    [Google Scholar]
  2. Apodaca G. 2001; Endocytic traffic in polarized epithelial cells: role of the actin and microtubule cytoskeleton. Traffic 2:149–159
    [Google Scholar]
  3. Araki N., Johnson M. T., Swanson J. A. 1996; A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages. Journal of Cell Biology 135:1249–1260
    [Google Scholar]
  4. Bartlett J. S., Wilcher R., Samulski R. J. 2000; Infectious entry pathway of adeno-associated virus and adeno-associated virus vectors. Journal of Virology 74:2777–2785
    [Google Scholar]
  5. Bayer N., Schober D., Huttinger M., Blaas D., Fuchs R. 2001; Inhibition of clathrin-dependent endocytosis has multiple effects on human rhinovirus serotype 2 cell entry. Journal of Biological Chemistry 276:3952–3962
    [Google Scholar]
  6. Benmerah A., Lamaze C., Begue B., Schmid S. L., Dautry-Varsat A., Cerf-Bensussan N. 1998; AP-2/Eps15 interaction is required for receptor-mediated endocytosis. Journal of Cell Biology 140:1055–1062
    [Google Scholar]
  7. Benmerah A., Bayrou M., Cerf-Bensussan N., Dautry-Varsat A. 1999; Inhibition of clathrin-coated pit assembly by an Eps15 mutant. Journal of Cell Science 112:1303–1311
    [Google Scholar]
  8. Bishop N. E. 1997; An update on non-clathrin coated endocytosis. Reviews in Medical Virology 7:199–207
    [Google Scholar]
  9. Bishop N. E. 1998; Examination of potential inhibitors of hepatitis A virus uncoating. Intervirology 41:261–271
    [Google Scholar]
  10. Bodaghi B., Slobbe-van Drunen M. E., Topilko A., Perret E., Vossen R. C., van Dam-Mieras M. C., Zipeto D., Virelizier J. L., LeHoang P., Bruggeman C. A., Michelson S. 1999; Entry of human cytomegalovirus into retinal pigment epithelial and endothelial cells by endocytosis. Investigative Ophthalmology & Visual Science 40:2598–2607
    [Google Scholar]
  11. Boleti H., Benmerah A., Ojcius D. M., Cerf-Bensussan N., Dautry-Varsat A. 1999; Chlamydia infection of epithelial cells expressing dynamin and Eps15 mutants: clathrin-independent entry into cells and dynamin-dependent productive growth. Journal of Cell Science 112:1487–1496
    [Google Scholar]
  12. Brodsky F. M., Chen C. Y., Knuehl C., Towler M. C., Wakeham D. E. 2001; Biological basket weaving: formation and function of clathrin-coated vesicles. Annual Review of Cell and Developmental Biology 17:517–568
    [Google Scholar]
  13. Carbone R., Fre S., Iannolo G., Belleudi F., Mancini P., Pelicci P. G., Torrisi M. R., Di Fiore P. P. 1997; eps15 and eps15R are essential components of the endocytic pathway. Cancer Research 57:5498–5504
    [Google Scholar]
  14. Ceresa B. P., Schmid S. L. 2000; Regulation of signal transduction by endocytosis. Current Opinion in Cell Biology 12:204–210
    [Google Scholar]
  15. Chen Y., Norkin L. C. 1999; Extracellular simian virus 40 transmits a signal that promotes virus enclosure within caveolae. Experimental Cell Research 246:83–90
    [Google Scholar]
  16. Collins R. N., Brennwald P. 2000; Rab. In GTPases pp 137–175 Edited by Hall A. Oxford: Oxford University Press;
    [Google Scholar]
  17. Constantinescu S. N., Cernescu C. D., Popescu L. M. 1991; Effects of protein kinase C inhibitors on viral entry and infectivity. FEBS Letters 292:31–33
    [Google Scholar]
  18. Corvera S. 2001; Phosphatidylinositol 3-kinase and the control of endosome dynamics: new players defined by structural motifs. Traffic 2:859–866
    [Google Scholar]
  19. Dautry-Varsat A. 2001; Clathrin-independent endocytosis. In Endocytosis pp 26–57 Edited by Marsh M. Oxford: Oxford University Press;
    [Google Scholar]
  20. Denzer K., Kleijmeer M. J., Heijnen H. F., Stoorvogel W., Geuze H. J. 2000; Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. Journal of Cell Science 113:3365–3374
    [Google Scholar]
  21. DeTulleo L., Kirchausen T. 1998; The clathrin endocytic pathway in viral infection. EMBO Journal 17:4585–4593
    [Google Scholar]
  22. Dharmawardhane S., Schurmann A., Sells M. A., Chernoff J., Schmid S. L., Bokoch G. M. 2000; Regulation of macropinocytosis by p21-activated kinase-1. Molecular Biology of the Cell 11:3341–3352
    [Google Scholar]
  23. Doxsey S. J., Brodsky F. M., Blank G. S., Helenius A. 1987; Inhibition of endocytosis by anti-clathrin antibodies. Cell 50:453–463
    [Google Scholar]
  24. Duan D., Li Q., Kao A. W., Yue Y., Pessin J. E., Engelhardt J. F. 1999; Dynamin is required for recombinant adeno-associated virus type 2 infection. Journal of Virology 73:10371–10376
    [Google Scholar]
  25. Ellis S., Mellor H. 2000; Regulation of endocytic traffic by Rho family GTPases. Trends in Cell Biology 10:85–88
    [Google Scholar]
  26. Feig L. A. 1999; Tools of the trade: use of dominant-inhibitory mutants of Ras-family GTPases. Nature Cell Biology 1:E25–E27
    [Google Scholar]
  27. Gampel A., Parker P. J., Mellor H. 1999; Regulation of epidermal growth factor receptor traffic by the small GTPase RhoB. Current Biology 9:955–958
    [Google Scholar]
  28. Garrett W., Chen L., Kroschewski R., Ebersold M., Turley S., Trombetta S., Galán J., Mellman I. 2000; Developmental control of endocytosis in dendritic cells by Cdc42. Cell 102:325–334
    [Google Scholar]
  29. Gilbert J. M., Benjamin T. L. 2000; Early steps of polyomavirus entry into cells. Journal of Virology 74:8582–8588
    [Google Scholar]
  30. Gold E. S., Underhill D. M., Morrissette N. S., Guo J., McNiven M. A., Aderem A. 1999; Dynamin 2 is required for phagocytosis in macrophages. Journal of Experimental Medicine 190:1849–1856
    [Google Scholar]
  31. Greber U. F. 2002; Signalling in virus entry. Cellular and Molecular Life Sciences (in Press)
    [Google Scholar]
  32. Gruenberg J. 2001; The endocytic pathway: a mosaic of domains. Nature Reviews. Molecular Cell Biology 2:721–730
    [Google Scholar]
  33. Harder T., Simons K. 1997; Caveolae, DIGs, and the dynamics of sphingolipid-cholesterol microdomains. Current Opinion in Cell Biology 9:534–542
    [Google Scholar]
  34. Henley J. R., Krueger E. W. A., Oswald B. J., McNiven M. A. 1998; Dynamin-mediated internalisation of caveolae. Journal of Cell Biology 141:85–99
    [Google Scholar]
  35. Hewlett L. J., Prescott A. R., Watts C. 1994; The coated pit and macropinocytic pathways serve distinct endosome populations. Journal of Cell Biology 124:689–703
    [Google Scholar]
  36. Hinshaw J. E. 2000; Dynamin and its role in membrane fission. Annual Review of Cell and Developmental Biology 16:483–519
    [Google Scholar]
  37. Hopkins C. R., Gibson A., Shipman M., Miller K. 1990; Movement of internalized ligand-receptor complexes along a continuous endosomal reticulum. Nature 346:335–339
    [Google Scholar]
  38. Huber M., Brabec M., Bayer N., Blaas D., Fuchs R. 2001; Elevated endosomal pH in HeLa cells overexpressing mutant dynamin can affect infection by pH-sensitive viruses. Traffic 2:727–736
    [Google Scholar]
  39. Joki-Korpela P., Marjomaki V., Krogerus C., Heino J., Hyypia T. 2001; Entry of human parechovirus 1. Journal of Virology 75:1958–1967
    [Google Scholar]
  40. Jones S. M., Howell K. E., Henley J. R., Cao H., McNiven M. A. 1998; Role of dynamin in the formation of transport vesicles from the trans-Golgi network. Science 279:573–577
    [Google Scholar]
  41. Just I., Selzer J., Wilm M., von Eichel-Streiber C., Mann M., Aktories K. 1995; Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375:500–503
    [Google Scholar]
  42. Kartenbeck J., Stukenbrok H., Helenius A. 1989; Endocytosis of simian virus 40 into the endoplasmic reticulum. Journal of Cell Biology 109:2721–2729
    [Google Scholar]
  43. Kleijmeer M., Ramm G., Schuurhuis D., Griffith J., Rescigno M., Ricciardi-Castagnoli P., Rudensky A. Y., Ossendorp F., Melief C. J., Stoorvogel W., Geuze H. J. 2001; Reorganization of multivesicular bodies regulates MHC class II antigen presentation by dendritic cells. Journal of Cell Biology 155:53–63
    [Google Scholar]
  44. Kornfeld S., Mellman I. 1989; The biogenesis of lysosomes. Annual Review of Cell Biology 5:483–525
    [Google Scholar]
  45. Kotani K., Hara K., Yonezawa K., Kasuga M. 1995; Phosphoinositide 3-kinase as an upstream regulator of the small GTP-binding protein Rac in the insulin signaling of membrane ruffling. Biochemical and Biophysical Research Communications 208:985–990
    [Google Scholar]
  46. Krizanová O., Ciampor F., Verber P. 1982; Influence of chlorpromazine on the replication of influenza virus in chick embryo fibroblasts. Acta Virologica 26:209–216
    [Google Scholar]
  47. Kunzelmann K., Beesley A. H., King N. J., Karupiah G., Young J. A., Cook D. I. 2000; Influenza virus inhibits amiloride-sensitive Na+ channels in respiratory epithelia. Proceedings of the National Academy of Sciences, USA 97:10282–10287
    [Google Scholar]
  48. Kurzchalia T. V., Parton R. G. 1999; Membrane microdomains and caveolae. Current Opinion in Cell Biology 11:424–431
    [Google Scholar]
  49. Lamaze C., Dujeancourt A., Baba T., Lo C. G., Benmerah A., Dautry-Varsat A. 2001; Interleukin 2 receptors and detergent-resistant membrane domains define a clathrin-independent endocytic pathway. Molecular Cell 7:661–671
    [Google Scholar]
  50. Lee S., Zhao Y., Anderson W. F. 1999; Receptor-mediated Moloney murine leukemia virus entry can occur independently of the clathrin-coated-pit-mediated endocytic pathway. Journal of Virology 73:5994–6005
    [Google Scholar]
  51. Li E., Stupack D., Bokoch G. M., Nemerow G. R. 1998a; Adenovirus endocytosis requires actin cytoskeleton reorganization mediated by Rho family GTPases. Journal of Virology 72:8806–8812
    [Google Scholar]
  52. Li E., Stupak D., Klemke R., Cheresh D. A., Nemerow G. R. 1998b; Adenovirus endocytosis via αv integrins requires phosphoinositide-3-OH kinase. Journal of Virology 72:2055–2061
    [Google Scholar]
  53. Locker J. K., Kuehn A., Schleich S., Rutter G., Hohenberg H., Wepf R., Griffiths G. 2000; Entry of the two infectious forms of vaccinia virus at the plasma membrane is signaling-dependent for the IMV but not the EEV. Molecular Biology of the Cell 11:2497–2511
    [Google Scholar]
  54. Madshus I. H., Sandvig K., Olsnes S., van Deurs B. 1987; Effect of reduced endocytosis induced by hypotonic shock and potassium depletion on the infection of Hep 2 cells by picornaviruses. Journal of Cellular Physiology 131:14–22
    [Google Scholar]
  55. Maniak M. 2001; Macropinocytosis. In Endocytosis pp 78–93 Edited by Marsh M. Oxford: Oxford University Press;
    [Google Scholar]
  56. Marechal V., Prevost M. C., Petit C., Perret E., Heard J. M., Schwartz O. 2001; Human immunodeficiency virus type 1 entry into macrophages mediated by macropinocytosis. Journal of Virology 75:11166–11177
    [Google Scholar]
  57. Marjomaki V., Pietiainen V., Matilainen H., Upla P., Ivaska J., Nissinen L., Reunanen H., Huttunen P., Hyypia T., Heino J. 2002; Internalization of echovirus 1 in caveolae. Journal of Virology 76:1856–1865
    [Google Scholar]
  58. Marsh M. 1984; The entry of enveloped viruses into cells by endocytosis. Biochemical Journal 218:1–10
    [Google Scholar]
  59. Marsh M., Helenius A. 1980; Adsorptive endocytosis of Semliki Forest virus. Journal of Molecular Biology 142:439–454
    [Google Scholar]
  60. Marsh M., Helenius A. 1989; Virus entry into animal cells. Advances in Virus Research 36:107–151
    [Google Scholar]
  61. Marsh M., Bron R. 1997; SFV infection in CHO cells: cell-type specific restrictions to productive virus entry at the cell surface. Journal of Cell Science 110:95–103
    [Google Scholar]
  62. Marsh M., McMahon H. T. 1999; The structural era of endocytosis. Science 285:215–220
    [Google Scholar]
  63. Marsh M., Pelchen-Matthews A. 2000; Endocytosis in viral replication. Traffic 1:525–532
    [Google Scholar]
  64. Marsh M., Helenius A., Matlin K., Simons K. 1983; Binding, endocytosis, and degradation of enveloped animal viruses. Methods in Enzymology 98:260–266
    [Google Scholar]
  65. Matlin K. S., Reggio H., Helenius A., Simons K. 1981; Infectious entry pathway of influenza virus in a canine kidney cell line. Journal of Cell Biology 91:601–613
    [Google Scholar]
  66. Matlin K. S., Reggio H., Helenius A., Simons K. 1982; Pathway of vesicular stomatitis virus leading to infection. Journal of Molecular Biology 156:609–631
    [Google Scholar]
  67. Mellman I. 1996; Endocytosis and molecular sorting. Annual Review of Cell and Developmental Biology 12:575–625
    [Google Scholar]
  68. Miller N., Hutt-Fletcher L. M. 1992; Epstein–Barr virus enters B cells and epithelial cells by different routes. Journal of Virology 66:3409–3414
    [Google Scholar]
  69. Miyazawa N., Crystal R. G., Leopold P. L. 2001; Adenovirus serotype 7 retention in a late endosomal compartment prior to cytosol escape is modulated by fiber protein. Journal of Virology 75:1387–1400
    [Google Scholar]
  70. Mothes W., Boerger A. L., Narayan S., Cunningham J. M., Young J. A. T. 2000; Retroviral entry mediated by receptor priming and low pH triggering of and envelope glycoprotein. Cell 103:679–689
    [Google Scholar]
  71. Mukhergee S., Ghosh R. N., Maxfield F. R. 1997; Endocytosis. Physiological Reviews 77:759–803
    [Google Scholar]
  72. Murphy C., Saffrich R., Grummt M., Gournier H., Rybin V., Rubino M., Auvinen P., Lutcke A., Parton R. G., Zerial M. 1996; Endosome dynamics regulated by a Rho protein. Nature 384:427–432
    [Google Scholar]
  73. Nakano M. Y., Boucke K., Suomalainen M., Stidwell R. P., Greber U. G. 2000; The first step of adenovirus type 2 disassembly occurs at the cell surface, independently of endocytosis and escape to the cytosol. Journal of Virology 74:7085–7095
    [Google Scholar]
  74. Nesterov A., Carter R. E., Sorkina T., Gill G. N., Sorkin A. 1999; Inhibition of the receptor-binding function of clathrin adaptor protein AP-2 by dominant–negative mutant μ2 subunit and its effects on endocytosis. EMBO Journal 18:2489–2499
    [Google Scholar]
  75. Neufeld E. B., Cooney A. M., Pitha J., Dawidowicz E. A., Dwyer N. K., Pentchev P. G., Blanchette-Mackie E. J. 1996; Intracellular trafficking of cholesterol monitored with a cyclodextrin. Journal of Biological Chemistry 271:21604–21613
    [Google Scholar]
  76. Nichols B. J., Lippincott-Schwartz J. 2001; Endocytosis without clathrin coats. Trends in Cell Biology 11:406–412
    [Google Scholar]
  77. Nichols B. J., Kenworthy A. K., Polishchuk R. S., Lodge R., Roberts T. H., Hirschberg K., Phair R. D., Lippincott-Schwartz J. 2001; Rapid cycling of lipid raft markers between the cell surface and Golgi complex. Journal of Cell Biology 153:529–541
    [Google Scholar]
  78. Nicoziani P., Vilhardt F., Llorente A., Hilout L., Courtoy P. J., Sandvig K., van Deurs B. 2000; Role for dynamin in late endosome dynamics and trafficking of the cation-independent mannose 6-phosphate receptor. Molecular Biology of the Cell 11:481–495
    [Google Scholar]
  79. Norkin L. C. 1999; Simian virus 40 infection via MHC class I molecules and caveolae. Immunological Reviews 168:13–22
    [Google Scholar]
  80. Orlandi P. A., Fishman P. H. 1998; Filipin-dependent inhibition of cholera toxin: evidence for toxin internalisation and activation through caveolae-like domains. Journal of Cell Biology 141:905–915
    [Google Scholar]
  81. Parker J. S., Parrish C. R. 2000; Cellular uptake and infection by canine parvovirus involves rapid dynamin-regulated clathrin-mediated endocytosis, followed by slower intracellular trafficking. Journal of Virology 74:1919–1930
    [Google Scholar]
  82. Pelkmans L., Helenius A. 2001; Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular transport pathway to the ER. Nature Cell Biology 3:473–483
    [Google Scholar]
  83. Pelkmans L., Puntener D., Helenius A. 2002; Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 296:535–539
    [Google Scholar]
  84. Pho M. T., Ashok A., Atwood W. J. 2000; JC virus enters human glial cells by clathrin-dependent receptor-mediated endocytosis. Journal of Virology 74:2288–2292
    [Google Scholar]
  85. Piper R. C., Luzio J. P. 2001; Late endosomes: sorting and partitioning in multivesicular bodies. Traffic 2:612–621
    [Google Scholar]
  86. Puri V., Watanabe R., Singh R. D., Dominguez M., Brown J. C., Wheatley C. L., Marks D. L., Pagano R. E. 2001; Clathrin-dependent and -independent internalization of plasma membrane sphingolipids initiates two Golgi targeting pathways. Journal of Cell Biology 154:535–547
    [Google Scholar]
  87. Rauma T., Tuukkanen J., Bergelson J. M., Denning G., Hautala T. 1999; Rab5 GTPase regulates adenovirus endocytosis. Journal of Virology 73:9664–9668
    [Google Scholar]
  88. Richterova Z., Liebl D., Horak M., Palkova Z., Stokrova J., Hozak P., Korb J., Forstova J. 2001; Caveolae are involved in the trafficking of mouse polyomavirus virions and artificial VP1 pseudocapsids toward cell nuclei. Journal of Virology 75:10880–10891
    [Google Scholar]
  89. Root C. R., Wills E. G., McNair L. L., Whittaker G. R. 2000; Entry of influenza viruses into cells is inhibited by a highly specific protein kinase C inhibitor. Journal of General Virology 81:2697–2705
    [Google Scholar]
  90. Rothberg K. G., Heuser J. E., Donzell W. C., Ying Y. S., Glenney J. R., Anderson R. G. 1992; Caveolin, a protein component of caveolae membrane coats. Cell 68:673–682
    [Google Scholar]
  91. Roy S., Luetterforst R., Harding A., Apolloni A., Etheridge M., Stang E., Rolls B., Hancock J. F., Parton R. G. 1999; Dominant–negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nature Cell Biology 1:98–105
    [Google Scholar]
  92. Roy A.-M. M., Parker J. S., Parrish C. R., Whittaker G. R. 2000; Early stages of influenza virus entry into Mv-1 lung cells: involvement of dynamin. Virology 267:17–28
    [Google Scholar]
  93. Russell D. G., Marsh M. 2001; Endocytosis in pathogen entry and replication. In Endocytosis pp 247–280 Edited by Marsh M. Oxford: Oxford University Press;
    [Google Scholar]
  94. Sanlioglu S., Benson P. K., Yang J., Atkinson E. M., Reynolds T., Engelhardt J. F. 2000; Endocytosis and nuclear trafficking of adeno-associated virus type 2 are controlled by rac1 and phosphatidylinositol-3 kinase activation. Journal of Virology 74:9184–9196
    [Google Scholar]
  95. Schmid S. L., McNiven M. A., De Camilli P. 1998; Dynamin and its partners: a progress report. Current Opinion in Cell Biology 10:504–512
    [Google Scholar]
  96. Seisenberger G., Ried M. U., Endress T., Buning H., Hallek M., Brauchle C. 2001; Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science 294:1929–1932
    [Google Scholar]
  97. Simons K., Toomre D. 2000; Lipid rafts and signal transduction. Nature Reviews. Molecular Cell Biology 1:31–39
    [Google Scholar]
  98. Sodeik B. 2000; Mechanisms of viral transport in the cytoplasm. Trends in Microbiology 8:465–472
    [Google Scholar]
  99. Somsel Rodman J., Wandinger-Ness A. 2000; Rab GTPases coordinate endocytosis. Journal of Cell Science 113:183–192
    [Google Scholar]
  100. Thomsen P., Roepstorff K., Stahlhut M., van Deurs B. 2002; Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Molecular Biology of the Cell 13:238–250
    [Google Scholar]
  101. Tooze J., Hollinshead M. 1991; Tubular early endosomal networks in AtT20 and other cells. Journal of Cell Biology 115:635–653
    [Google Scholar]
  102. Vanderplasschen A., Hollinshead M., Smith G. L. 1998; Intracellular and extracellular vaccinia virions enter cells by different mechanisms. Journal of General Virology 79:877–887
    [Google Scholar]
  103. Wang L. H., Rothberg K. G., Anderson R. G. 1993; Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. Journal of Cell Biology 123:1107–1117
    [Google Scholar]
  104. Wang K., Huang S., Kapoor-Munshi A., Nemerow G. 1998; Adenovirus internalization and infection require dynamin. Journal of Virology 72:3455–3458
    [Google Scholar]
  105. Werling D., Hope J. C., Chaplin P., Collins R. A., Taylor G., Howard C. J. 1999; Involvement of caveolae in the uptake of respiratory syncytial virus antigen by dendritic cells. Journal of Leukocyte Biology 66:50–58
    [Google Scholar]
  106. West M. A., Bretscher M. S., Watts C. 1989; Distinct endocytotic pathways in epidermal growth factor-stimulated human carcinoma A431 cells. Journal of Cell Biology 109:2731–2739
    [Google Scholar]
  107. West M. A., Prescott A. R., Eskelinen E.-L., Ridley A., Watts C. 2000; Rac is required for constitutive macropinocytosis by dendritic cells but does not control its downregulation. Current Biology 10:839–848
    [Google Scholar]
  108. Whittaker G. R., Helenius A. 1998; Nuclear import and export of viruses and virus genomes. Virology 246:1–23
    [Google Scholar]
  109. Whittaker G. R., Kann M., Helenius A. 2000; Viral entry into the nucleus. Annual Review of Cell and Developmental Biology 16:627–651
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-7-1535
Loading
/content/journal/jgv/10.1099/0022-1317-83-7-1535
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error