1887

Abstract

Herpes simplex virus type 1 (HSV-1) glycoprotein M (gM/UL10) is a 473 aa type III transmembrane protein that resides in various membrane compartments. HSV-1 gM contains several putative trafficking motifs, but their functional relevance remains to be elucidated. We show here that transiently expressed gM 19–343 was sufficient for transport to the -Golgi network (TGN), whilst gM 133–473, where the first two transmembrane domains were deleted, and gM 1–342, which lacked the final residue of the last transmembrane domain, were retained in the endoplasmic reticulum (ER), indicating that all transmembrane domains are required for proper folding and ER exit. A series of bacterial artificial chromosome mutants revealed that in addition to the authentic start codon, translation of gM can be initiated at methionine 19 and 133/135. Whilst a protein lacking the first 18 residues supported WT-like growth, gM 133/135–473 resulted in reduced plaque diameters resembling a UL10 deletion mutant. An HSV-1 mutant encoding gM 1–342 showed similar growth characteristics and accumulated non-enveloped cytoplasmic particles, whilst gM 1–343 resulted in a gain of function, indicating that all transmembrane domains of the protein are important for viral growth. A C-terminal extension further supported viral propagation; however, the C-terminal trafficking motifs (residues 423–473) were completely dispensable. We propose a functional core within gM 19–343 comprised of all transmembrane domains that is sufficient to target the protein to the TGN, a favoured site for envelopment, and to support viral functions.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000262
2015-11-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/11/3313.html?itemId=/content/journal/jgv/10.1099/jgv.0.000262&mimeType=html&fmt=ahah

References

  1. Baines J.D., Roizman B. 1991; open reading frames UL3, UL4, UL10, and UL16 are dispensable for the replication of herpes simplex virus 1 in cell culture. J Virol 65:938–944[PubMed]
    [Google Scholar]
  2. Baines J.D., Roizman B. 1993; The UL10 gene of herpes simplex virus 1 encodes a novel viral glycoprotein, gM, which is present in the virion and in the plasma membrane of infected cells. J Virol 67:1441–1452[PubMed]
    [Google Scholar]
  3. Baines J.D., Wills E., Jacob R.J., Pennington J., Roizman B. 2007; Glycoprotein M of herpes simplex virus 1 is incorporated into virions during budding at the inner nuclear membrane. J Virol 81:800–812 [View Article][PubMed]
    [Google Scholar]
  4. Brack A.R., Klupp B.G., Granzow H., Tirabassi R., Enquist L.W., Mettenleiter T.C. 2000; Role of the cytoplasmic tail of pseudorabies virus glycoprotein E in virion formation. J Virol 74:4004–4016 [View Article][PubMed]
    [Google Scholar]
  5. Browne H., Bell S., Minson T. 2004; Analysis of the requirement for glycoprotein m in herpes simplex virus type 1 morphogenesis. J Virol 78:1039–1041 [View Article][PubMed]
    [Google Scholar]
  6. Buckmaster E.A., Gompels U., Minson A. 1984; Characterisation and physical mapping of an HSV-1 glycoprotein of approximately 115 × 103 molecular weight. Virology 139:408–413 [View Article][PubMed]
    [Google Scholar]
  7. Caviness K., Cicchini L., Rak M., Umashankar M., Goodrum F. 2014; Complex expression of the UL136 gene of human cytomegalovirus results in multiple protein isoforms with unique roles in replication. J Virol 88:14412–14425 [View Article][PubMed]
    [Google Scholar]
  8. Chouljenko D.V., Kim I.J., Chouljenko V.N., Subramanian R., Walker J.D., Kousoulas K.G. 2012; Functional hierarchy of herpes simplex virus 1 viral glycoproteins in cytoplasmic virion envelopment and egress. J Virol 86:4262–4270 [View Article][PubMed]
    [Google Scholar]
  9. Cohen G.H., Katze M., Hydrean-Stern C., Eisenberg R.J. 1978; Type-common CP-1 antigen of herpes simplex virus is associated with a 59,000-molecular-weight envelope glycoprotein. J Virol 27:172–181[PubMed]
    [Google Scholar]
  10. Crump C.M., Bruun B., Bell S., Pomeranz L.E., Minson T., Browne H.M. 2004; Alphaherpesvirus glycoprotein M causes the relocalization of plasma membrane proteins. J Gen Virol 85:3517–3527 [View Article][PubMed]
    [Google Scholar]
  11. Dijkstra J.M., Visser N., Mettenleiter T.C., Klupp B.G. 1996; Identification and characterization of pseudorabies virus glycoprotein gM as a nonessential virion component. J Virol 70:5684–5688[PubMed]
    [Google Scholar]
  12. ElKasmi I., Lippé R. 2014; HSV-1 gN partners with gM to modulate the viral fusion machinery. J Virol 89:2313–2323 [CrossRef]
    [Google Scholar]
  13. Favoreel H.W. 2006; The why's of Y-based motifs in alphaherpesvirus envelope proteins. Virus Res 117:202–208 [View Article][PubMed]
    [Google Scholar]
  14. Fossum E., Friedel C.C., Rajagopala S.V., Titz B., Baiker A., Schmidt T., Kraus T., Stellberger T., Rutenberg C., other authors. 2009; Evolutionarily conserved herpesviral protein interaction networks. PLoS Pathog 5:e1000570 [View Article][PubMed]
    [Google Scholar]
  15. Fuchs W., Mettenleiter T.C. 1999; DNA sequence of the UL6 to UL20 genes of infectious laryngotracheitis virus and characterization of the UL10 gene product as a nonglycosylated and nonessential virion protein. J Gen Virol 80:2173–2182[PubMed] [CrossRef]
    [Google Scholar]
  16. Fuchs W., Mettenleiter T.C. 2005; The nonessential UL49.5 gene of infectious laryngotracheitis virus encodes an O-glycosylated protein which forms a complex with the non-glycosylated UL10 gene product. Virus Res 112:108–114 [View Article][PubMed]
    [Google Scholar]
  17. Goodwin E.C., Lipovsky A., Inoue T., Magaldi T.G., Edwards A.P., Van Goor K.E., Paton A.W., Paton J.C., Atwood W.J., other authors. 2011; BiP and multiple DNAJ molecular chaperones in the endoplasmic reticulum are required for efficient simian virus 40 infection. MBio 2:e00101–e00111 [View Article][PubMed]
    [Google Scholar]
  18. Johnson D.C., Baines J.D. 2011; Herpesviruses remodel host membranes for virus egress. Nat Rev Microbiol 9:382–394 [View Article][PubMed]
    [Google Scholar]
  19. Kim I.J., Chouljenko V.N., Walker J.D., Kousoulas K.G. 2013; Herpes simplex virus 1 glycoprotein M and the membrane-associated protein UL11 are required for virus-induced cell fusion and efficient virus entry. J Virol 87:8029–8037 [View Article][PubMed]
    [Google Scholar]
  20. Klupp B.G., Nixdorf R., Mettenleiter T.C. 2000; Pseudorabies virus glycoprotein M inhibits membrane fusion. J Virol 74:6760–6768 [View Article][PubMed]
    [Google Scholar]
  21. Koyano S., Mar E.C., Stamey F.R., Inoue N. 2003; Glycoproteins M and N of human herpesvirus 8 form a complex and inhibit cell fusion. J Gen Virol 84:1485–1491 [View Article][PubMed]
    [Google Scholar]
  22. Krzyzaniak M.A., Mach M., Britt W.J. 2009; HCMV-encoded glycoprotein M (UL100) interacts with Rab11 effector protein FIP4. Traffic 10:1439–1457 [View Article][PubMed]
    [Google Scholar]
  23. Lau S.Y., Crump C.M. 2015; HSV-1 gM and the gK/pUL20 complex are important for the localization of gD and gH/L to viral assembly sites. Viruses 7:915–938 [View Article][PubMed]
    [Google Scholar]
  24. Leege T., Fuchs W., Granzow H., Kopp M., Klupp B.G., Mettenleiter T.C. 2009; Effects of simultaneous deletion of pUL11 and glycoprotein M on virion maturation of herpes simplex virus type 1. J Virol 83:896–907 [View Article][PubMed]
    [Google Scholar]
  25. Loret S., Guay G., Lippé R. 2008; Comprehensive characterization of extracellular herpes simplex virus type 1 virions. J Virol 82:8605–8618 [View Article][PubMed]
    [Google Scholar]
  26. Mach M., Kropff B., Dal Monte P., Britt W. 2000; Complex formation by human cytomegalovirus glycoproteins M (gpUL100) and N (gpUL73). J Virol 74:11881–11892 [View Article][PubMed]
    [Google Scholar]
  27. Mach M., Kropff B., Kryzaniak M., Britt W. 2005; Complex formation by glycoproteins M and N of human cytomegalovirus: structural and functional aspects. J Virol 79:2160–2170 [View Article][PubMed]
    [Google Scholar]
  28. MacLean C.A., Efstathiou S., Elliott M.L., Jamieson F.E., McGeoch D.J. 1991; Investigation of herpes simplex virus type 1 genes encoding multiply inserted membrane proteins. J Gen Virol 72:897–906 [View Article][PubMed]
    [Google Scholar]
  29. MacLean C.A., Robertson L.M., Jamieson F.E. 1993; Characterization of the UL10 gene product of herpes simplex virus type 1 and investigation of its role in vivo . J Gen Virol 74:975–983 [View Article][PubMed]
    [Google Scholar]
  30. Maringer K., Stylianou J., Elliott G. 2012; A network of protein interactions around the herpes simplex virus tegument protein VP22. J Virol 86:12971–12982 [View Article][PubMed]
    [Google Scholar]
  31. Martínez-Gil L., Saurí A., Marti-Renom M.A., Mingarro I. 2011; Membrane protein integration into the endoplasmic reticulum. FEBS J 278:3846–3858 [View Article][PubMed]
    [Google Scholar]
  32. Mettenleiter T.C., Klupp B.G., Granzow H. 2009; Herpesvirus assembly: an update. Virus Res 143:222–234 [View Article][PubMed]
    [Google Scholar]
  33. Osterrieder N., Neubauer A., Brandmuller C., Braun B., Kaaden O.R., Baines J.D. 1996; The equine herpesvirus 1 glycoprotein gp21/22a, the herpes simplex virus type 1 gM homolog, is involved in virus penetration and cell-to-cell spread of virions. J Virol 70:4110–4115[PubMed]
    [Google Scholar]
  34. Raschbichler V., Lieber D., Bailer S.M. 2012; NEX-TRAP, a novel method for in vivo analysis of nuclear export of proteins. Traffic 13:1326–1334 [View Article][PubMed]
    [Google Scholar]
  35. Ren Y., Bell S., Zenner H.L., Lau S.Y., Crump C.M. 2012; Glycoprotein M is important for the efficient incorporation of glycoprotein H-L into herpes simplex virus type 1 particles. J Gen Virol 93:319–329 [View Article][PubMed]
    [Google Scholar]
  36. Sadaoka T., Yanagi T., Yamanishi K., Mori Y. 2010; Characterization of the varicella-zoster virus ORF50 gene, which encodes glycoprotein M. J Virol 84:3488–3502 [View Article][PubMed]
    [Google Scholar]
  37. Schmidt T., Striebinger H., Haas J., Bailer S.M. 2010; The heterogeneous nuclear ribonucleoprotein K is important for Herpes simplex virus-1 propagation. FEBS Lett 584:4361–4365 [View Article][PubMed]
    [Google Scholar]
  38. Shukla N., Wan S., Angelini G.D., Jeremy J.Y. 2013; Low nanomolar thapsigargin inhibits the replication of vascular smooth muscle cells through reversible endoplasmic reticular stress. Eur J Pharmacol 714:210–217 [View Article][PubMed]
    [Google Scholar]
  39. Stylianou J., Maringer K., Cook R., Bernard E., Elliott G. 2009; Virion incorporation of the herpes simplex virus type 1 tegument protein VP22 occurs via glycoprotein E-specific recruitment to the late secretory pathway. J Virol 83:5204–5218 [View Article][PubMed]
    [Google Scholar]
  40. Tarentino A.L., Plummer T.H. Jr, Maley F. 1973; A beta-mannosidic linkage in the unit A oligosaccharide of bovine thyroglobulin. J Biol Chem 248:5547–5548[PubMed]
    [Google Scholar]
  41. Wills E., Mou F., Baines J.D. 2009; The UL31 and UL34 gene products of herpes simplex virus 1 are required for optimal localization of viral glycoproteins D and M to the inner nuclear membranes of infected cells. J Virol 83:4800–4809 [View Article][PubMed]
    [Google Scholar]
  42. Wu S.X., Zhu X.P., Letchworth G.J. 1998; Bovine herpesvirus 1 glycoprotein M forms a disulfide-linked heterodimer with the UL49.5 protein. J Virol 72:3029–3036[PubMed]
    [Google Scholar]
  43. Zhang J., Nagel C.H., Sodeik B., Lippé R. 2009; Early, active, and specific localization of herpes simplex virus type 1 gM to nuclear membranes. J Virol 83:12984–12997 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000262
Loading
/content/journal/jgv/10.1099/jgv.0.000262
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error