@article{mbs:/content/journal/jgv/10.1099/jgv.0.000328, author = "Solanki, Manish and Zhang, Wenli and Jing, Liu and Ehrhardt, Anja", title = "Adenovirus hexon modifications influence in vitro properties of pseudotyped human adenovirus type 5 vectors", journal= "Journal of General Virology", year = "2016", volume = "97", number = "1", pages = "160-168", doi = "https://doi.org/10.1099/jgv.0.000328", url = "https://www.microbiologyresearch.org/content/journal/jgv/10.1099/jgv.0.000328", publisher = "Microbiology Society", issn = "1465-2099", type = "Journal Article", abstract = "Commonly used human adenovirus (HAdV)-5-based vectors are restricted by their tropism and pre-existing immunity. Here, we characterized novel HAdV-5 vectors pseudotyped with hypervariable regions (HVRs) and surface domains (SDs) of other HAdV types. Hexon-modified HAdV-5 vectors (HV-HVR5, HV-HVR12, HV-SD12 and HV-SD4) could be reconstituted and amplified in human embryonic kidney cells. After infection of various cell lines, we measured transgene expression levels by performing luciferase reporter assays or coagulation factor IX (FIX) ELISA. Dose-dependent studies revealed that luciferase expression levels were comparable for HV-HVR5, HV-SD12 and HV-SD4, whereas HV-HVR12 expression levels were significantly lower. Vector genome copy numbers (VCNs) from genomic DNA and nuclear extracts were then determined by quantitative real-time PCR. Surprisingly, determination of cell- and nuclear fraction-associated VCNs revealed increased VCNs for HV-HVR12 compared with HV-SD12 and HV-HVR5. Increased nuclear fraction-associated HV-HVR12 DNA molecules and decreased transgene expression levels were independent of the cell line used, and we observed the same effect for a hexon-modified high-capacity adenoviral vector encoding canine FIX. In conclusion, studying hexon-modified adenoviruses in vitro demonstrated that HVRs but also flanking hexon regions influence uptake and transgene expression of adenoviral vectors.", }